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Novel H5 clade 2.3.4.6 viruses with both α-2,3
and α-2,6 receptor binding properties may pose a
pandemic threat
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Abstract

The emerging H5 clade 2.3.4.6 viruses of different NA subtypes have been detected in different domestic poultry in China.
We evaluated the receptor binding property and transmissibility of four novel H5 clade 2.3.4.6 subtype highly pathogenic
avian influenza viruses. The results show that these viruses bound to both avian-type (α-2,3) and human-type (α-2,6)
receptors. Furthermore, we found that one of these viruses, GS/EC/1112/11, not only replicated but also transmitted
efficiently in guinea pigs. Therefore, such novel H5 subtype viruses have the potential of a pandemic threat.
Introduction, methods, and results
H5N1 subtype highly pathogenic avian influenza virus
(HPAIV) was first isolated in sick geese in China in
1996,and has continued to evolve into over 10 distinct
phylogenetic clades including different subclades based
on the hemagglutinin (HA) gene [1]. Since 2010, H5
HPAIV subtypes which belong to the recommended
novel clade 2.3.4.6 [2] with various neuraminidase (NA)
subtypes (H5N1, H5N2, H5N6 and H5N8) have been
detected in different domestic poultry in China [2-7].
Furthermore, the H5N8 virus-caused outbreaks have
also been reported in wild birds and poultry in South
Korea and Japan in January and April, 2014 respectively
[8,9]. Here, we tested the receptor binding property
of four novel clade 2.3.4.6 viruses, and guinea pigs
were used as a mammalian model to examine the
replication and transmission of these viruses. All animal
experiments were approved by the Jiangsu Administrative
Committee for Laboratory Animals (permission number
SYXK-SU-2007-0005) and complied with the guidelines of
the Jiangsu laboratory animal welfare and ethics of Jiangsu
Administrative Committee of Laboratory Animals.
During surveillance of poultry for avian influenza

viruses in live poultry markets in eastern China in 2013, one
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H5N8 avian influenza virus, A/duck/Shandong/Q1/2013
(DkQ1), was isolated from domestic ducks. The GenBank
accession numbers for the DkQ1 segments are KM504098
to KM504105. Sequence analysis showed that all 8 genes of
DkQ1 are closely related to those H5N8 viruses which
have been reported in eastern China [4,5]. Furthermore,
the HA gene of DkQ1 has high nucleotide identity with
the H5N8 viruses circulating in South Korea and Japan in
2014 [8,9]. And all these H5N8 viruses belong to the
recommended novel clade 2.3.4.6 [2]. In addition, one
H5N8 virus A/duck/Jiangsu/k1203/2010 (Dkk1203) [4]
and two H5N2 viruses A/duck/Eastern China/1111/2011
(DK/EC/1111/11) and A/goose/Eastern China/1112/2011
(GS/EC/1112/11) [3], which have been reported to
circulate in eastern China, also possess HA genes belonging
to the novel clade 2.3.4.6. Here, we investigated the
receptor binding property and transmissibility of these
four H5 (HPAIV) clade 2.3.4.6. All experiments with
viruses were performed in a Biosafety Level 3 laboratory.
It is generally accepted that haemagglutinin-receptor-

binding preference to α-2,6-linked sialylated glycans is
the initial key step for a novel influenza-virus-causing
pandemic [10]. First, we examined the receptor-binding
specificity of these reassortant viruses by hemagglutination
assays using goose red blood cells that were treated with a
α-2,3-specific sialidase as previously described [11]. The A
(H1N1)pdm2009 virus A/California/04/2009 (CA/04) and
poultry H5N1 isolate A/mallard/Huadong/S/2005 (HD/05)
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[12] were used as controls. Theoretically, the sialidase
digestion should abolish hemagglutination by α-2,3-specific
viruses, whereas viruses that can bind to α-2,6-receptors
should maintain hemagglutination activity with the
treated red blood cells. The sialidase treatment did
not affect the hemagglutination titer of CA/04, as
shown in Table 1. Compared to untreated GRBC,
these reassortant viruses still show some lower HA
activity with α-2,3-sialidase-treated GRBC, which had
only α-2,6-receptors (Table 1).
To characterize the receptor-binding properties of

these viruses further, we performed solid-phase bind-
ing assays with different glycans as previously de-
scribed [13]. Briefly, the synthetic sialylglycopolymers
Neu5Aca2-3Galb1-4GlcNAcb (3’SLN)-PAA-biotin and
Neu5Aca2-3Galb1-4GlcNAcb (6’SLN)-PAA-biotin (Gly-
coTech) were serially diluted in PBS and added to the
wells of 96-well streptavidin coated microtiter plates
(Pierce). The plates were blocked with PBS containing 2%
skim milk powder, and 128 HA units of live virus was
added per well. Chicken antiserum against the virus was
diluted in PBS and added to each well. Bound antibody was
detected by sequential addition of HRP-conjugated rabbit
anti-chicken IgG antibody and tetramethylbenzidine
substrate solution. The reaction was stopped with
1 M H2SO4, and the absorbance was read at 450 nm.
Each sample was measured in triplicate. Our results
show these reassortant viruses were bound to both
avian-type (α-2,3) and human-type (α-2,6) receptors,
whereas HD/05 and CA/04 viruses were preferentially
bound to α-2,3 and α-2,6 receptors respectively, as
expected (Figure 1). These results indicate that the
HA of these reassortant viruses binds to α-2,3 receptors as
well as to α-2,6 receptors.
To investigate the replication of these reassortant

viruses, groups of four animals were anesthetized with
pentobarbital natricum (40–50 mg/Kg) and inoculated
intranasally with 106EID50 of test virus in a 300 μL
volume (150 μL per nostril). Two animals from each group
were euthanized with CO2 on day 3 post inoculation
Table 1 Hemagglutination titers of viruses from humans
and animalsa

Virus stain HA titers (log2)

Untreated GRBCs Treated GRBCs

CA/04 6 6

HD/05 8 0

DK/EC/1111/11 8 7

GS/EC/1112/11 7 6

Dkk1203 7 5

DkQ1 7 6
aHemagglutination titers were determined using goose red blood cells treated
with α-2, 3-sialidas.
(pi) and nasal washes, tracheas, lungs, kidneys, spleens,
and brains were collected for virus titration in eggs. The
remaining two animals were observed for two weeks for
signs of disease and death. The A(H1N1)pdm2009 virus
A/California/04/2009 (CA/04) and poultry H5N1 isolate
A/mallard/Huadong/S/2005 (HD/05) were used as controls.
As shown in Table 2, all reassortant viruses were detected
in the nasal washes, tracheas and lungs of both inoculated
animals, but only could be detected at lower titers in the
trachea and lungs of infected guinea pigs. Virus was
not detected in the brains, kidneys or spleens of any of
the inoculated animals. We also infected two animals
for each virus and observed them for two weeks for
signs of pathogenicity. After two weeks pi, all of the
animals seroconverted (Table 2). None of the animals
showed disease signs during the observation period.
These results indicate that replication of these reassortant
viruses in guinea pigs is restricted to the respiratory
system.
For the contact transmission studies, groups of three

animals were inoculated intranasally with 106EID50 of
test virus and housed in a cage placed inside an isolator.
Three naïve animals were introduced into the same
cage 24 h later. Nasal washes were collected at 2 day
intervals, beginning on day 2 pi (1 day post contact)
and titrated in eggs. Sera were collected from guinea pigs
at 14 days post inoculation (dpi) for hemagglutinin
inhibition (HI) antibody detection [14]. Evidence of
transmission was based on the detection of virus in
the nasal wash and on seroconversion at the end of
the two-week observation period. The A/California/
04/2009 (CA/04) virus was used as controls. As
shown in Figure 2, reassortant virus was detected in
the nasal washes of all three inoculated guinea pigs
between days 2–6 pi, but not in any of the contact
guinea pigs. In the GS/EC/1112/11-inoculated groups
(Figure 2B), virus was detected in the nasal washes of
all three inoculated guinea pigs between days 2–6 pi,
respectively and was also detected in the nasal washes
of all three contact animals between days 4–8 pi.
Seroconversion occurred in all inoculated groups (Table 2).
In the contact animal groups, seroconversion was only
observed among animals placed with the GS/EC/
1112/11-inoculated animals. These results indicate that
the transmissibility of the reassortant viruses in guinea
pigs varies among viral strains, and of the four test
viruses, only GS/EC/1112/11 transmit efficiently in this
mammalian host.

Discussion
Historically, changes in the receptor binding protein
of influenza virus, HA, have been implicated in the
initiation of a pandemic. It has been established for the
H1N1 (1918), H2N2 (1957) and H3N2 (1968) pandemic



Figure 1 Solid-phase receptor-binding assay of the H5 (HPAIV) clades 2.3.4.6. Solid-phase receptor-binding assay of human isolate CA/04
(A), poultry isolate HD/05 (B), DK/EC/1111/11 virus (C), GS/EC/1112/11 virus (D), Dkk1203 virus (E) and DkQ1 virus (F). Direct binding of viruses
to sialylglycopolymers containing either 3’SLN-PAA or 6’SLN-PAA was measured. The data shown are representative of three independent
binding experiments.
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viruses that a change in HA protein from a preference for
α-2,3-linked sialic acids (avian receptor) to a preference for
α-2,6-linked sialic acids (human receptor) is a prerequisite
for efficient transmission of avian viruses to humans
[10]. H5 HPAIV pose a serious pandemic threat due
to their virulence and high mortality in humans, and
their increasingly expanding host reservoir and significant
ongoing evolution could enhance their human-to-human
transmissibility. Recently, novel clade 2.3.4.6 H5 HPAIV
with various NA subtypes (H5N1, H5N2, H5N6, and
H5N8) were reported in Eastern China and South Korea
[2-7,9,15]. Here, we evaluated their receptor specificity
and transmission in guinea pigs. The results show that the
viruses bound to both avian-type (α-2,3) and human-type



Table 2 Virus replication and seroconversion in guinea pigs

Virus stain Replication in guinea pigsa Seroconversion of the guinea pigs in
transmission studies

Virus titers in organs(log10EID50/mL) Seroconversion
(positive/total)d

Seroconversion: positive/total (HI titers)e

Nasal washb Lung trachea spleen kidney brain Inoculated Contact

DK/EC/1111/11 4.8 ± 0.3 3.5 ± 0.2 1.2 ± 0.2 - c - - 2/2 3/3(40,40,40) 0/3

GS/EC/1112/11 4.4 ± 0.7 3.2 ± 0.4 1.0 ± 0.1 - - - 2/2 3/3(80,40,40) 3/3(20,20,20)

Dkk1203 4.2 ± 1.6 2.8 ± 0.5 0.8 ± 0.1 - - - 2/2 3/3(80,80,40) 0/3

DkQ1 4.3 ± 1.3 2.7 ± 0.3 0.8 ± 0.2 - - - 2/2 3/3(80,40,40) 0/3

HD/05 - 1.0 ± 0.2 - - - - 0/2

CA/04 5.4 ± 0.4 4.5 ± 0.3 2.8 ± 0.4 - - - 2/2 3/3(160,320,320) 3/3(80,160,160)
aGroups of four guinea pigs were slightly anesthetized and intranasally inoculated with 106EID50 of test virus in a 300 μL volume, 150 μL per nostril. Two animals
from each group were euthanized on day 3 pi and samples, including nasal wash, lung, trachea, spleen, kidney and brain, were collected for virus titration in
eggs. The remaining two animals were observed for two weeks and sera were collected at the end of the observation period.
bData shown are log10EID50/mL.
cvirus was not detected in the undiluted sample.
dSeroconversion was confirmed by hemagglutination inhibition (HI) assay.
eSera were collected from guinea pigs on day 14 pi and treated overnight with Vibrio cholera receptor-destroying enzyme. Seroconversion was confirmed by
hemagglutination inhibition (HI) assay.

Figure 2 Transmisson of the H5 (HPAIV) clades 2.3.4.6 in guinea pigs. (A) DK/EC/1111/11 virus, (B) GS/EC/1112/11 virus, (C) Dkk1203 virus, (D) DkQ1
virus and (E) CA/04 virus. Each color bar represents the virus titer from an individual animal. The dashed blue lines in these panels indicate the lower limit of detection.
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(α-2,6) receptors. In humans, the α-2,6 receptor is expressed
mainly in the upper airway, while the α-2,3 receptor is
expressed in alveoli and the terminal bronchiole [16]. A
virus with good affinity to both α-2,3 and α-2,6 receptors
may especially be harmful, as it could infect efficiently via
its binding to α-2,6 receptors in the upper airway and simul-
taneously cause severe infection in the lung via its binding
to α-2,3 receptors. And this hypothesis is supported by the
fact that one of the two well-characterized HA genes from
the H1N1 1918 pandemic virus binds efficiently to both
α-2,3 and α-2,6 receptors [17]. In addition, previous
studies showed that the human-infecting novel H7N9 and
the latest reassortant H10N8 avian influenza viruses yet
have substantial affinity to both avian-type (α-2,3) and
human-type (α-2,6) receptors [18,19]. Sequence analysis
showed that novel H5 (HPAIV) clade 2.3.4.6 simultan-
eously carry a T160A mutation which results in the lack of
an oligosaccharide side chain at 158–160 of HA, and it is
critical for the H5 subtype influenza viruses tested to
bind to human-like receptors and to transmit among
a mammalian host [20,21]. Whether this T160A vari-
ation affects the receptor-binding property deserves
further investigation. Previous studies showed that some
H5 subtype influenza viruses can transmit efficiently in
guinea pigs [21]. In this study, we also found that one of
these viruses, GS/EC/1112/11, not only replicated but also
transmitted efficiently in guinea pigs. These findings
emphasize that continued circulation of these viruses may
pose health threats for humans. Therefore, we need to
intensify our effort to detect such viruses as early as
possible.
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