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Abstract

After the unexpected emergence of Bluetongue virus serotype 8 (BTV-8) in northern Europe in 2006, another
arbovirus, Schmallenberg virus (SBV), emerged in Europe in 2011 causing a new economically important disease in
ruminants. The virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in
Germany, in The Netherlands and in Belgium in 2011 and soon after in the United Kingdom, France, Italy,
Luxembourg, Spain, Denmark and Switzerland. This review describes the current knowledge on the emergence,
epidemiology, clinical signs, molecular virology and diagnosis of SBV infection.
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1. Introduction
At the end of the summer and in the autumn 2011,
hyperthermia and drop in milk production were
reported in adult dairy cows in north-west Germany and
The Netherlands [1]. In some cases, transient diarrhoea
was also recorded in the Netherlands [2]. Some of the
symptoms observed were similar to the disease caused
by Bluetongue virus (BTV) and a re-emergence of this
virus that led to a major epizooty in 2006–2008 in
Europe was feared. Surprisingly, no known bovine
pathogen was identified in samples from symptomatic
cattle [3-5]. In November 2011, the Friedrich-Loëffler
Institute (FLI) in Germany detected viral RNA belonging
to a new virus in a pool of blood samples from clinically
affected dairy cows using a metagenomic approach [3].
This new virus was called Schmallenberg virus (SBV)
after the place of origin of the collected samples.
Analysis of viral genomic sequences revealed similarities
with Akabane, Aino and Shamonda viruses, all belonging
to the Orthobunyavirus genus from the Bunyaviridae
family. Douglas, Sathuperi and Shamonda viruses were
later identified as closer relatives of SBV [6]. A specific real-
time quantitative reverse transcription PCR (RT-qPCR) was
then developed by FLI to detect the SBV genome and the
protocol shared with many European partners. The
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iginal work is properly cited.

mailto:vdoceul@vet-alfort.fr
http://creativecommons.org/licenses/by/2.0


Doceul et al. Veterinary Research 2013, 44:31 Page 2 of 13
http://www.veterinaryresearch.org/content/44/1/31
inoculation of 9-month old calves with blood of cattle that
were RT-qPCR positive for SBV or with the virus isolated
in Culicoides variipennis larvae cells (KC cells) caused fever
and mucous diarrhoea, providing experimental evidence
that SBV might be responsible for the clinical signs
observed [3].
This paper reviews current knowledge on the emer-

gence, molecular virology, clinical signs, diagnosis and
seroprevalence of SBV and is based on data published
up to the end of January 2013 in peer-reviewed journals,
internet-based reporting systems such as the Program
for Monitoring Emerging Diseases (proMED-mail), com-
munications from research institutes and official reports
from governmental and European institutions such as
the European Food and Safety Authority (EFSA).

2. Timeline of SBV infection in Europe
SBV was first detected in Germany and The Netherlands in
2011 [3]. In December 2011, The Netherlands reported a
teratogenic effect of SBV in sheep with the birth of
malformed lambs with crooked neck, hyrocephalus and stiff
joints [2]. The presence of SBV was then reported in
Belgium at the end of December 2011 and in the United
Kingdom on the 22nd of January 2012. France reported its
first case of SBV on the 25th of January 2012 after the virus
genome was detected by RT-qPCR in brain samples from
malformed lambs born on farms located in the territorial
divisions of “Moselle” and “Meurthe et Moselle” in north-
eastern France [7]. The presence of SBV was then reported
in Luxembourg on the 16th of February [8]. On the 17th of
February, SBV was confirmed in a malformed goat in
north-east Italy [8] and on the 12th of March, in Spain
(Andalusia), in a newborn lamb [9].
By the end of April 2012, SBV had been detected

in 3628 herds in Europe [10]. SBV-infected holdings
recorded up to this date corresponded to infections
occurring in 2011. In May 2012, acute SBV infections
were detected in cattle in south west France in the
Pyrénées-Atlantiques territorial division [11], indicat-
ing that SBV was able to re-circulate after the winter
period. Similar conclusions were also made after the
detection of the virus in the United Kingdom in
newborn lambs born in May and June 2012 [12,13]
and in Germany in cattle, sheep and goat holdings
sampled in 2012 [14].
Early 2012, the development of assays to detect anti-

SBV antibodies, as discussed later in this review, provided
a useful tool to show evidence of SBV infection since
viraemia is transient [3,15].
On the 5th of June, Denmark reported the presence of

antibodies against SBV in two cattle from southern
Jutland [16] and on the 20th of July, Switzerland
confirmed its first cases of acute SBV infection in cows
from two farms in the canton of Berne [17].
By August 2012, more than 5500 cases of SBV
infection in ruminants had been recorded across
northern Europe [18].
In mid-September, anti-SBV antibodies were detected

in Austria in cattle and sheep [19]. At the beginning of
October 2012, the presence of antibodies to SBV was
reported in western Poland in goats that were sampled
at the end of July 2012 [20,21] and in Sweden in cows
[22]. In mid-October, anti-SBV antibodies were detected
in northern Scotland in a tup and in two cows from
Finland that were sampled at the end of September 2012
[23]. Further studies suggested that the virus had spread
to South Finland during the summer and early autumn
of 2012 [24]. At the end of October 2012, the presence
of SBV was detected in Ireland in a bovine foetus [25,26]
and a few days later, in Northern Ireland in a malformed
calf [27,28].
By the end of October 2012, SBV infection was

confirmed by RT-qPCR and/or serology in approximately
6000 holdings in Europe [29].
In November 2012, antibodies against the virus were

detected in milk from cattle herds in Norway [30] and an
outbreak of SBV was reported in Italy (Sardinia) in a sheep
flock with cases of abortion and foetal malformations [31].
At the end of December 2012, SBV was detected for the
first time in the Czech Republic following the birth of
malformed lambs [32]. In mid-January 2013, the first cases
of SBV were confirmed in Estonia in sheep foetuses [33]
and at the end of January the presence of SBV was
confirmed in sheep in Slovenia [34].
All these reports show that SBV has spread rapidly in

vast parts of Europe.

3. Molecular virology
Analysis of viral sequences has led to the classification of
SBV in the Bunyaviridae family and the Orthobunyavirus
genus. The Bunyaviridae family is composed of 350
viruses that are divided into 5 genera: Orthobunyavirus,
Hantavirus, Nairovirus, Phlebovirus and Tospovirus.
Viruses from this family infect vertebrates with the
exception of tospoviruses that are plant viruses.
Viruses such as Rift Valley fever virus (Phlebovirus),
Akabane virus (Orthobunyavirus) and Nairobi sheep
disease virus (Nairovirus) are important pathogens in
veterinary medicine. Other viruses, such as hantaviruses
responsible for hemorrhagic fever with renal syndrome
and cardio-pulmonary syndrome or Crimean-Congo
hemorrhagic fever virus (Nairovirus), can cause serious dis-
ease in humans. The Orthobunyavirus genus is composed
of more than 170 viruses divided into 18 serogroups. SBV
belongs to the Simbu serogroup that also includes Simbu
virus, Oropouche virus, Akabane virus, Douglas virus,
Sathuperi virus, Aino virus, Shamonda virus, Peaton virus
and many others.
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3.1. Genome and structure
The bunyavirus genome consists of 3 segments of negative-
sense single-stranded RNA: the L (large), M (medium) and
S (small) segments [35] (Figure 1A). Phleboviruses and
tospoviruses differ from other bunyaviruses since their S
segment adopts an ambisense coding strategy. The L
segment encodes the RNA-dependent RNA polymerase
(RdRp) L (or L protein), the M segment encodes a precur-
sor polyprotein that is co-translationally cleaved into the
envelope glycoproteins Gn and Gc and the non-structural
protein NSm and the S segment encodes the nucleoprotein
N and the non-structural protein NSs in an overlapping
open reading frame. The three segments of the SBV
genome have been fully sequenced [3,36] but its structure
and the different encoded proteins are not yet well-
characterised and can only be predicated from the data
available on related viruses (Figure 1B).
Virions from bunyaviruses are enveloped, spherical

and have a diameter of approximately 80 to 120 nm.
Figure 1 Schematic representation of a generic bunyavirus
virus particle (A) and SBV antigenomes (B). (A) The bunyavirus
virion has a diameter of 80 to 120 nm. The three RNA segments
(S, M and L) associate with the L polymerase and the N nucleoprotein
to form RNP. (B) The three antigenomic RNA encode for several
predicated ORF as indicated by double-sided arrows. The number of
nucleotides (nt) of the different ORF and the corresponding number of
amino acids (aa) are shown [3]. Putative co-translational cleavage sites
of the polyprotein encoded by segment M are indicated by scissors
but are not yet characterised.
They acquire their membrane when budding at the Golgi
apparatus lumen [37-39]. Electron microscopy performed
at the FLI confirmed that, similarly to other bunyaviruses,
the SBV virus particle has a diameter of approximately 100
nm and is membrane-enveloped [40]. Virus particles of
bunyaviruses are constituted of 4 structural proteins: the
two surface glycoproteins Gn and Gc and the viral poly-
merase complex composed of the polymerase L protein
and the nucleoprotein N. This complex is responsible for
the transcription and replication of the viruses that occur
exclusively in the cytoplasm. Inside the virus particle, the
viral genome is present as a ribonucleoprotein (RNP)
associated with many copies of the nucleoprotein N and a
few copies of the polymerase L.

3.2. Life cycle
Since SBV was discovered recently, very little is known
on its life cycle and knowledge accumulated on other
bunyaviruses can only be discussed.
The replication cycle of bunyaviruses is exclusively

cytoplasmic. It begins with the recognition of the cellular
receptor, unknown for the majority of bunyaviruses, by
the Gn/Gc heterodimers present at the surface of the
virion membrane [41,42]. Virions enter the cell via endo-
cytosis. Change of pH in vesicles induces conformational
modifications of the viral glycoproteins and the exposure
of the Gc fusion peptide [43]. The viral envelope fuses
with the membranes of the endosomes and the RNP are
released inside the cytoplasm. The primary transcription
can start and produce viral mRNA via a mechanism of
catch-snatching [44]. The L protein cleaves a sequence
of 10 to 18 nucleotides from the 5’ end of capped
mature cellular mRNA to use it as a primer for the initi-
ation of viral transcription. Viral mRNA are synthesised
and translation by host cell ribosomes leads to the
production of viral proteins. The L and N proteins are
needed for replication of the viral genome and the glyco-
proteins Gn and Gc form heterodimer complexes in the
endoplasmic reticulum. Both glycoproteins are then
transported to the Golgi apparatus via a Golgi-retention
signal, located on Gn for most bunyaviruses, where their
glycosylation is completed [45].
Assembly of bunyaviruses is thought to occur mostly

in tubular virus factories containing both cellular and
viral components situated around the Golgi complex
[37,46,47]. From free nucleotides, the viral L polymerase
produces complementary copies of the whole viral
genome called antigenomes that are also present as RNP
and are needed for the production of high quantities of
viral genomes. Newly-formed genome RNP then accu-
mulate in the Golgi complex where they directly interact
with the C-terminal domains of the glycoproteins Gn
and Gc [48-51]. Maturation of viral particles occurs via
budding through the modified membrane of the Golgi
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apparatus. For orthobunyaviruses, these steps depend on
the NSm protein that is associated with the Golgi apparatus
via three transmembrane domains [52,53]. Mature virus
particles are then transported in vesicles to the plasma
membrane where they are released in the extracellular
compartment by exocytosis. Further morphological changes
then occur resulting in the release of fully infectious
extracellular virus particles.

3.3. Pathogenicity
The pathogenicity of orthobunyaviruses is dependent on
multiple viral factors encoded by the three genomic
segments. For example, the neuroinvasive ability of La
Crosse virus, another orthobunyavirus from the California
serogroup, is determined by the polymerase and/or
the glycoproteins whereas the host immune response
is inhibited by NSs that antagonises the expression of
type I interferon (IFN-I) and the transcription mediated by
RNA polymerase II [54-59]. NSs from Bunyamwera
(Bunyamwera serogroup), the prototype virus for the
Orthobunyavirus genus and the Bunyaviridae family, also
contributes to viral pathogenesis and seems to be a major
virulence factor. This non-structural protein inhibits
protein synthesis and the host cell antiviral response
by interfering with RNA polymerase II-dependent
transcription, IFN-I production and apoptosis mediated
by IRF-3 [60-65].
Although there is no conservation of sequence, NSs

from other bunyaviruses are also involved in pathogen-
esis and inhibition of the host cell antiviral response. For
example, NSs from Rift Valley fever virus suppresses
host transcription by interfering with the subunits of the
transcription factor II H (TFIIH) complex, degrades
dsRNA-activated protein kinase (PKR) and represses the
activation of the promoter IFN-β via its association with
a subunit of the Sin3A repressor complex [66-70].
However, little is known about the viral factors

involved in the pathogenicity of viruses involved in
veterinary medicine, such as Akabane virus, Shamonda
virus and SBV. Recently, it was shown that IFN-I recep-
tor (IFNAR) knock-out mice [71] are susceptible to SBV
infection and can develop fatal disease as previously
reported for La Crosse virus [72] and that intracerebral
injection of SBV is lethal for NIH-Swiss mice [36].
Moreover, a study has suggested that infectious serum
from cattle is more suitable for standardised SBV infec-
tion model than culture-grown virus [73]. These models
could be useful in the future to study SBV pathogenesis
and contribute to the design of vaccines. Reverse
genetic systems have also been developed for SBV
and provide a powerful tool to characterise the virus
[36,74]. Recombinant viruses lacking NSs have already
been generated to study the role of the viral protein
as a virulence factor. It was subsequently shown that
NSs is not essential for the virus to replicate in vitro
[36,74] but a virus lacking the viral protein is attenuated
in newborn mice [36]. NSs was found to block protein
synthesis [74] and to interfere with the production of IFN
[36,74] suggesting that, similarly to other bunyaviruses,
NSs of SBV is able to modulate the host innate immune
response.

3.4. Phylogeny
Initial phylogenetic analysis of the SBV genomic
segments indicated that SBV displays 69% identity with
Akabane virus for the L segment, 71% identity with Aino
virus for the M segment and 97% identity with
Shamonda virus for the S segment [3]. After analysis of
additional sequence data, it was reported that the M
segment of the Sathuperi and Douglas orthobunyaviruses
display higher identity with SBV whereas the S and L
segments are closer to the Shamonda virus [75]. All these
viruses belong to the Simbu serogroup, although no cross-
protection has been reported between them. All together,
these studies suggested that the 3 genomic segments of
SBV could be the result of a reassortment between the
segment M of the Sathuperi virus and segments S and L
of the Shamonda virus. Nevertheless, another group has
recently determined the almost full-genome sequences of
9 viruses from the Simbu serogroups belonging to five
species (i.e. species Shamonda virus (Shamonda virus,
Peaton virus and Sango virus), species Sathuperi virus
(Douglas virus and Sathuperi virus), species Shuni virus
(Aino virus and Shuni virus), species Akabane virus (Sabo
virus) and species Simbu virus (Simbu virus)) [6]. Phylo-
genetic analysis of all of these sequences has shown that
SBV belongs to the Sathuperi virus species. This conclu-
sion is also supported by a serological investigation show-
ing that Douglas and Sathuperi viruses, but not Shamonda
virus, are neutralised by anti-SBV serum [6]. In this study,
it was also suggested that SBV is an ancestor of Shamonda
virus, the latter being a reassortant containing the S and L
genomic segments from SBV and the M segment from an
unclassified virus.

4. Clinical signs
Sheep and goats seem to be very mildly affected by SBV
infection. Symptoms are more apparent in adult cows,
and include loss of appetite, hyperthermia and diarrhoea,
which can lead to a 50% reduction in milk production
[76-78]. Symptoms usually disappear within a few days.
The viraemia induced by SBV is short-lived, lasting for 2
to 6 days in cattle [3,78].
In December 2011, The Netherlands reported a terato-

genic effect of SBV in sheep with manifestations comparable
to those observed for Akabane and Aino viruses [79-82].
Infected females are able to transmit the virus to foetuses
(ovine, caprine and bovine), which developed atypical
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malformations leading most frequently to intra-uterine
death or death immediately after birth. Common congenital
malformations and clinical signs in aborted and stillborn an-
imals include a neuro-musculo-skeletal disorder called
arthrogryposis, severe torticollis, ankylosis, kyphosis, lordosis
scoliosis, brachygnathia inferior and neurological disorders
such as amaurosis, ataxia and/or behavioral abnormalities
(“dummy syndrome” as observed during the epizooty caused
by BTV serotype 8 (BTV-8) [83-85] (Figure 2).
In case of twin gestation, one twin can suffer from

arthrogryposis and the other from neurological disorders.
One twin can also be born malformed and the other one
viable or only affected by a delayed growth.
Newborns suffer from severe neurological disorders

that generally lead to death of the animal several hours to
several days after birth. It was reported that a SBV-
positive one-week old calf born at term showed severe
central nervous system lesions, severe dysfunctions of the
cerebral cortex, basal ganglia and mesencephalon, severe
porencephaly or hydranencephaly but no arthrogryposis
[86]. Interestingly, the SBV genome was still detectable in
the CNS, suggesting that it is able to persist in the infected
foetus after birth.
Necropsy has revealed some cases of hydranencephaly

(lack of the brain cerebral hemispheres), hydrocephaly,
cerebral and cerebellar hypoplasia and porencephaly
[84,86-88] (Figure 2).
Figure 2 Clinical manifestations of SBV. Necropsy of a three-day-old SBV
and a SBV-positive stillborn lamb presenting arthrogryposis and hydranenc
filled sac containing 250 mL of cerebrospinal fluid (hydrocephaly) that was
after removal of the cerebrospinal fluid. The cerebellum was present but ap
lamb. (D) The remaining cerebral hemispheres appeared as a 3 mm thick w
the cerebellum.
Histological studies have revealed lymphohistiocytic
inflammation in the central nervous system and glial
nodules in the mesencephalon and hippocampus in ovine
species. Astrogliosis and microgliosis were detected in
both calves and lambs and some cases of myofibrillar
hypoplasia of skeletal muscles were reported for both
species [84]. Histological examination of the brain and
spinal cord of a ten-day old SBV RT-qPCR-positive calf
has also reported the presence of meningoencephalitis
and poliomyelitis [89]. Furthermore, immunohistochemis-
try and in situ hybridisation methods performed on brain
sections have suggested that neurons are the major target
for SBV replication in naturally infected newborn lambs
and calves [36,88].
In the case of Akabane virus, infection of the foetus

occurs between the 28th and 36th day of gestation in
sheep, the 30th and 50th day in goats and the 76th and
174th day in bovines [81]. The severity of foetal injury
depends on the time of infection during gestation and
maximal damage occurs when neuronal tissues are
differentiating [78,81,90]. Detection of the SBV genome
in brain, blood or spleen samples in malformed aborted
or stillborn ruminants, which represent the majority of
the diagnosed cases from December 2011 to March
2012 for lambs and March to June 2012 for calves, indi-
cates that infection of the mother occurred during gesta-
tion, in autumn 2011 [29]. A study has estimated the
-positive calf suffering from amaurosis and hydranencephaly (A-B)
ephaly (C-D). (A) The cerebral hemispheres were replaced by a fluid-
removed with a syringe. (B) The cerebral hemispheres were examined
peared hypoplastic. (C) Brachygnathia was observed in the stillborn
all enclosing cerebrospinal fluid. The brainstem was preserved but not
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risk of SBV infection for foetuses born from cows
primo-infected after formation of the placenta to 28%
[91]. No visible clinical signs are present at birth if in
utero infection occurs while the immune system of the
foetus is able to control the infection [91].
SBV can infect bison as reported in Germany [92]. The

virus is also able to infect wild cervids and llamas but no
clinical signs or macroscopic abnormalities were recorded
for these species [93,94]. The virus might infect other wild
species and domestic animals such as horses or dogs, as
reported for viruses belonging to the Orthobunyavirus
genus. However, SBV infection has not yet been reported
in these species. Most of the viruses from the Simbu
serogroup are not considered to be zoonotic, with the
exception of Oropouche virus, which can infect humans
and provoke severe flu-like symptoms. To date, no
evidence of SBV infection in humans has been reported
and no SBV-neutralising antibodies have been detected in
sera from persons (farmers and veterinarians) exposed to
the virus [95,96].

5. Transmission
The majority of bunyaviruses are transmitted by arthropod
vectors and, in particular, mosquitoes, phlebotoms,
culicoides, ticks and thrips, with the exception of hantavi-
ruses which are transmitted by rodents. Studies have shown
that viruses within the Simbu serogroup are mostly trans-
mitted by culicoides, but also by mosquitoes from the
Aedes and Culex genus and by several species of ticks
[97,98]. Recently, a study has reported the presence of the
SBV genome in a pool of culicoides (C. obsoletus complex,
C. chiopterus and C. dewulfi) trapped from July to October
2011 in Belgium [99]. Culicoides from the C. obsoletus
group trapped in Denmark during the same period also
contained SBV RNA [100]. Furthermore, SBV RNA was
detected in C. obsoletus complex and C. chiopterus collected
in August-September 2011 in the Netherlands where the
prevalence of SBV among Culicoides at this period was esti-
mated to be around 0.25% [101]. The virus has also been
found in biting midges in Norway, Poland and Sweden
[102-104]. These studies suggest that species of culicoides
identified as vectors for BTV also act as vectors for the
transmission of SBV [105-108]. To date, no studies have
been carried out to assess the ability of other arthropods,
such as mosquitoes and ticks, to act as vectors for the
transmission of SBV.
Cases of acute SBV infection were recorded following the

start of the 2012 vector season in France, the United King-
dom, Switzerland, Germany and Italy [11-14,17,29,31]. It is
not yet known how SBV is able to persist despite the winter
season. It could be the result of the vector population
surviving the cold season or the virus persisting in the cat-
tle population or in other reservoirs. It has been
reported that some culicoides species are present
inside farm buildings during the winter and are able
to complete their life cycle in animal enclosures
[109,110]. It is then possible that SBV is able to persist
from year to year in the vector population despite winter
temperatures.

6. Origin
The history and geographical origins of SBV raise
numerous questions. As for the introduction of BTV-8
in The Netherlands and Belgium in 2006, the causes of
SBV emergence in northern Europe remain unknown.
The closest relatives to SBV are Sathuperi, Douglas,
Shamonda, Akabane, Aino, Peaton or Sango viruses but,
to date, they have not been identified in Europe [111].
These viruses are present in other parts of the world and
seem to be able to emerge in regions far from their areas
of enzootic distribution. Akabane and Aino viruses are
distributed in the Far East and Australia, and Akabane
virus has been found recently in Israel and also in
Turkey. Similarly, Shamonda virus was detected in
Nigeria in the 1960s and has been isolated since only in
Japan in 2005 [112]. Although SBV was discovered only
recently, there is no doubt that its origins are more
ancient and that it might have co-evolved with other
closely related viruses. Viruses belonging to the Simbu
serogroup have not been well studied and epidemio-
logical data are poor. Nevertheless, phylogenetic analyses
based on samples taken in different regions of the world
at different periods of time suggest that these viruses
evolve slowly. For example, the nucleotide sequences of
Japanese strains of the Shamonda virus isolated in 2005
differ by only 3% from those of strains isolated in
Nigeria 30 years before [112].
As discussed above, Shamonda virus is thought to be a

reassortant containing the S and L genomic segments
from SBV and the M segment from an unclassified virus
[6]. Such reassortment phenomena have been described
previously between viruses of the Orthobunyavirus genus
[113]. In the Simbu serogroup, it is thought that Peaton
virus is derived from an ancestor generated by a
reassortment between Akabane and Aino viruses [114]
and that a virus circulating in Japan is the product of
reassortment between a Japanese strain of the Aino virus
and an Australian strain of the Peaton virus [113].
SBV emergence is a reminder that bunyaviruses and

particularly orthobunyaviruses are a potential threat for
European livestock. Akabane and Aino viruses are
already present in the Mediterranean region and
might be introduced into Europe. Consequently, the
surveillance of livestock and vector populations is critical
to monitor the emergence of such viruses in Europe. The
identification of the Batai virus, an Orthobunyavirus be-
longing to the Bunyamwera serogroup, in populations of
Anopheles maculipennis trapped in the south-western part
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of Germany in 2009 illustrates the importance of this type
of surveillance [115].
It is surprising that SBV has emerged in the same

region of Europe as BTV-8 in 2006 and later BTV-6 and
−11, and may suggest that the viruses followed the same
route of introduction. SBV might have been present
before in a region of the world where no and/or rare
clinical signs were manifested or reported in the native
population. Considering the increase in international
trade of animals and products of animal or vegetal
origin, it is of no doubt that Europe will face more and
more frequently this type of emergence.

7. Diagnosis
Diagnosis of SBV infection relies on the detection of the
viral genome by RT-qPCR, as mentioned above. It is a du-
plex assay that was initially developed by the FLI [3,116].
The technique is based on the simultaneous amplification
of a SBV gene and an endogenous gene, β-actin or
GAPDH, which is used as an internal positive control
(IPC) to ascertain RNA integrity and the absence of PCR
inhibitors. Primers amplifying a part of the L gene segment
were first used as a template for the detection of the SBV
genome. A protocol targeting the S segment was then
optimised and showed higher sensitivity [15]. This protocol
was implemented in most laboratories in Europe. Brain
samples from aborted or stillborn lambs, kids and calves
have mainly been used for diagnosis of SBV. Studies have
shown that samples from the cerebrum, external placental
fluid and the umbilical and spinal cord are suitable for the
detection of SBV [116] and that the highest concentration
of SBV RNA is found in the brainstem [117,118].
Viral isolation requires the inoculation of Vero (African

green monkey kidney epithelial), BHK-21 (baby hamster
kidney fibroblast) or KC (Culicoides variipennis larvae)
cells with brain, serum or blood samples.
Once SBV strains were available, virus neutralisation

tests (VNT) and a plaque reduction neutralisation test
were developed to detect antibodies present in the
serum of infected animals [96,119,120]. These methods
are time-consuming (4 to 6 days) and cannot be auto-
mated. A diagnostic test that allows serological testing of
a large number of samples, not possible by VNT, was
needed to diagnose SBV infection and estimate SBV
seroprevalence in infected areas. An indirect ELISA test
based on a recombinant SBV nucleoprotein antigen
produced by ID-VET (Montpellier, F-34070) was
designed. This test was validated by the Animal
Health laboratory at the French agency for food,
environmental and occupational health and safety
(ANSES) in Maisons-Alfort (Alfort ANSES laboratory)
in April 2012 and currently provides a rapid and less
expensive tool for serological diagnosis [121]. A Dutch
group has developed an ELISA based on SBV that has
been cultured on partially purified and completely
inactivated Vero cells [122]. This assay was shown to be a
sensitive test to detect antibodies in foetal or procolostral
sera and diagnose SBV in newborn calves and lambs.
ELISA tests have also been developed to detect anti-SBV
antibodies in milk [123,124].
Interestingly, in a study looking at anti-SBV antibodies

in foetal blood samples from calves and lambs, it was
shown that 74% of the samples tested positive for SBV in-
fection by ELISA whereas only 27% were SBV-positive by
RT-qPCR [122]. Using a VNT assay [121], the Alfort
ANSES laboratory also found that from 71 aborted or
stillborn animals with malformations evocative of SBV, for
which the laboratories had received brain samples and
serum samples from their “mothers”, 100% of the mother
sera were VNT positive whereas only 61.9% (44/71) of the
offspring brain samples were SBV-positive by RT-qPCR
(unpublished data). These different results suggest that
the diagnosis by RT-qPCR might have underestimated the
real number of SBV cases. It is possible that the foetus is
able to produce neutralising antibodies that will clear the
virus. Neutralising antibodies against Akabane virus can
be found in foetal and precolostral sera from calves
[79,125]. This would explain why, in some cases,
aborted or stillborn animals with clinical signs of SBV
infection are found RT-qPCR-negative for the virus and
the difficulties to isolate the virus. Other explanations
would be that the genome of the virus is destroyed after
the death of the foetus or during sampling and processing
of the samples or that SBV infection is not the cause of
the malformations observed.

8. Surveillance
Sharing knowledge and tools has allowed affected and
neighbouring regions to efficiently and rapidly monitor
the progression of SBV infections in Europe as shown
in Figure 3A.
For example, in France, a national passive SBV surveil-

lance system coordinated by the Ministry of Agriculture
was launched on the 4th of January 2012 in consultation
with the French epidemiological surveillance platform for
animal health. Veterinarians were asked to send samples
(brain, spleen) from stillborns or malformed ruminant
offspring showing clinical signs such as arthrogryposis,
torticolis, scoliosis, brachygnathia and/or hydranencephaly.
RT-qPCR was performed to detect SBV RNA and virus was
isolated using the protocols kindly provided by Dr Martin
Beer and Dr Bernd Hoffmann from the FLI, as described
above [3,116]. From December 2011 to the beginning of
March 2012, the Alfort ANSES laboratory was the labora-
tory designated by the Ministry of Agriculture to diagnose
SBV infection in France. In mid-March 2012, a network of
66 local laboratories was established for SBV testing. This
laboratory network is similar to the one established for
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Figure 3 Location of SBV infection in Europe and France. (A) Spread of SBV infection for all ruminants in Europe from September 2011 to
October 2012 (source: European Food and Safety Authority [29]). Affected countries reported the location and the time of the first report of
confirmed SBV infection. (B) Location of SBV infected farms in France as of August 31, 2012 (source: French Ministry of Agriculture [127]). A total
of 3197 farms have been reported to be SBV-infected. The seroprevalence of SBV in several farms from different French territorial divisions
(northern regions (02 and 76), eastern region (54 and 57) and central region (18 and 87)) where SBV had been previously detected or
neighbouring farms is also shown [132]. The presence of anti-SBV antibodies in cattle or sheep were detected by ELISA and VNT. The first, second
and third farms where SBV was detected in France are also indicated.

Doceul et al. Veterinary Research 2013, 44:31 Page 9 of 13
http://www.veterinaryresearch.org/content/44/1/31
the detection of the BTV genome by RT-qPCR and
has considerably increased the capacity to test samples
from suspected animals. This structure allowed the testing
of hundreds of thousands of blood samples by RT-qPCR
or by ELISA using automats. Thus, the experience gained
during the BTV-8 emergence in 2006 [126] has facilitated
the rapid development of a laboratory network for SBV
diagnosis at a national level. The surveillance measures
established by the French government ended on the 31st

of May for ovine and caprine ruminants and on the 31st of
August for bovines. As of the 31th of August 2012, 3197
SBV infected farms had been reported in France (i.e. in
which at least one malformed offspring tested positive for
SBV by RT-qPCR), including 1143 sheep farms, 2019 cat-
tle farms and 35 goat farms (Figure 3B). SBV-infected
farms are localised mainly in the north-east and the
central-west of France [127]. Following the new cases of
SBV recorded in different regions of France since the be-
ginning of September 2012, surveillance measures were
re-established from the 1st of November 2012 to monitor
congenital forms of SBV. They will take into account all
cases detected from the 1st of September 2012 [128]. To
date, France remains the country with the highest
number of SBV-infected farms recorded.

9. Seroprevalence
Serologic investigations are needed to determine seropreva-
lence in affected and neighbouring regions and monitor the
spread of SBV infection. They are also useful to improve
modelling predictions and assess the overall impact of SBV.
Serological studies were conducted in several European
countries following the design of new tools to detect
anti-SBV antibodies.
A study investigating the prevalence of antibodies against

SBV among dairy cattle in The Netherlands during winter
2011–2012 has reported an estimated seroprevalence
of 72.5% [129].
Antibodies against SBV have been detected in 91% of

cows sampled within 250 km of the location where SBV
emerged in Belgium in February-April 2012 [91].
Additional studies performed in all of Belgium have
reported a between-herd and within-herd seroprevalence
of 99.76% and 86.3%, respectively in cattle (11 635 cattle
from 422 herds sampled between the 2nd of January
and the 7th of March 2012) [130]. A between-herd
seroprevalence of 98.03% and a within-herd seropreva-
lence of 84.31% were also found in sheep (1082 sheep
from 83 flocks sampled between the 4th of November
2011 and the 4th of April 2012) and a within-herd sero-
prevalence of 40.68% was found in goats (142 goats from
8 flocks sampled during the same period) [131]. These
reports suggest that most host animals have been in
contact with SBV in Belgium.
Preliminary seroprevalence studies were also undertaken

by the Alfort ANSES laboratory in farms from different
French territorial divisions using ELISA and VNT [132]. A
high seroprevalence of SBV in cattle and sheep herds (32 to
100%) was found in northern and eastern regions of France
as shown on Figure 3B. SBV seroprevalence seems lower in
farms situated in southern parts of France (7.5 to 14.9%).
These data are in accordance with the introduction of SBV
in France from the north-east part of the country where
the first cases were diagnosed. This suggests that, like BTV
in 2007, SBV spread from the north-east of France to the
rest of the territory. However, more serological studies need
to be undertaken to confirm these findings.
The high seroprevalence of SBV found in The

Netherlands, Belgium and in several French farms,
indicates a widespread exposure to SBV during the
biting insect season in 2011. Retrospective and prospective
serological studies on ovine, bovine and caprine livestock
will help to elucidate the period of SBV introduction in
Europe. Similarly, it would be interesting to study the
seroprevalence of SBV in wild species to evaluate their
involvement as a reservoir of the virus. A study has
reported the presence of anti-SBV antibodies in roe and
red deer from southern Belgium sampled from October to
December 2011 [93]. An average seroprevalence of 43.1%
was found in the cervids sampled suggesting that SBV had
spread rapidly among wild deer and that wild species
could be involved as reservoirs of the virus.

10. Impact
SBV has a low or limited impact on animal health.
Reports submitted by different European countries
affected by SBV have estimated morbidity and mortality
rates of less than 3% [133]. The highest proportion of
SBV-confirmed herds in comparison with the total number
of herds per region is 6.6% for sheep and 4% for cattle [29].
Nevertheless, it remains difficult to provide an accurate
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estimation of the number of herds affected by the virus
and to determine the economic impact of the disease on
the livestock industry since cases were most likely
underreported or underdetected [132,134,135].
Few data are available on the impact of SBV within

herds. A preliminary survey investigating the impact of
SBV infection in sheep flocks in France has been
conducted recently. This study showed that in SBV
RT-qPCR-positive flocks, an average of 85% lambs
were healthy while 13% were born dead or died rapidly
after birth and 2% were born with malformations but
survived for more than 12 h (data from 363 flocks and 64
548 lambs) [136]. However, the clinical impact was very
variable between flocks. This might be due to differences in
the proportion of ewes at a susceptible stage of pregnancy
at the time of exposure to SBV.

11. Prevention
Considering SBV has a limited impact on animal health,
trade restrictions have not been advised and are regarded
as unjustified by the European Union (EU) and the World
Organisation for Animal Health (OIE) [137]. SBV is trans-
mitted by a vector that is widespread within Europe and
movement bans would be ineffective. However, many
countries outside the EU have imposed restrictions on the
import of live animals and products from the EU such as
semen and embryos. Recently, SBV RNA has been
detected in the semen of naturally infected bulls and SBV
infection was reported in calves inoculated experimentally
with SBV RT-qPCR-positive semen [138-140]. These find-
ings show that the semen of bulls naturally infected with
SBV can be infectious and suggest that SBV and Akabane
virus differ in terms of semen contamination since a group
has reported previously that the semen from bulls infected
experimentally with Akabane virus is not infectious [141].
The export of semen from countries where SBV is present
might represent a risk of contamination. It is then essen-
tial to develop a sensitive test for the detection of SBV
RNA in semen and to perform further studies to deter-
mine the risk of transmission of SBV via this route and
the impact of the virus on fertility.
Vaccination is a preventive measure that could reduce

the impact of SBV [142]. The development of vaccines is in
progress and a vaccine should be available commercially in
the future [30,143]. Nevertheless, the cost of vaccination
for the livestock industry might not be justified since SBV
seems to be a low impact disease. Vaccines have been
developed against Akabane disease but management
of outbreaks relies mainly on the sentinel monitoring
of vectors and cattle [142,144,145].

12. Conclusions
The emergence of SBV at the end of 2011 in Europe is a
reminder that the introduction of new diseases remains
a threat for European countries. The rapid response to
the emergence of SBV established by affected European
countries has shown that an efficient network of labora-
tories is in place to face the emergence of new animal
viruses. SBV was able to re-circulate after the winter
season and is still circulating in Europe. A certain level
of protection exists within the ruminant populations but
it is likely that a significant percentage of animals
remains susceptible to SBV in areas where no or few
cases of SBV have been reported. This suggests that new
congenital cases of SBV infection will occur during the
winter 2012–2013. Maintaining an efficient surveillance
would be essential to further describe the progression of
the epidemic and its impact on the breeding industry.
More studies are needed to determine the regions in
which SBV is present, to understand its geographical
and genetic origin and to identify its putative reservoirs.
A better understanding of the pathogenesis associated
with SBV infection and the ability of SBV antibodies to
protect animals against the disease will also be useful to
control the disease.
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