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Abstract

Helicobacter (H.) suis colonizes the stomach of pigs and is the most prevalent gastric non-H. pylori Helicobacter
species in humans. Limited information is available on host immune responses after infection with this agent and it
is unknown if variation in virulence exists between different H. suis strains. Therefore, BALB/c and C57BL/6 mice
were used to compare colonization ability and gene expression of various inflammatory cytokines, as determined
by real-time PCR, after experimental infection with 9 different H. suis strains. All strains were able to persist in the
stomach of mice, but the number of colonizing bacteria at 59 days post inoculation was higher in stomachs of
C57BL/6 mice compared to BALB/c mice. All H. suis strains caused an upregulation of interleukin (IL)-17, which was
more pronounced in BALB/c mice. This upregulation was inversely correlated with the number of colonizing
bacteria. Most strains also caused an upregulation of regulatory IL-10, positively correlating with colonization in
BALB/c mice. Only in C57BL/6 mice, upregulation of IL-1(3 was observed. Increased levels of IFN-y mRNA were never
detected, whereas most H. suis strains caused an upregulation of the Th2 signature cytokine IL-4, mainly in BALB/c
mice. In conclusion, the genetic background of the murine strain has a clear impact on the colonization ability of
different H. suis strains and the immune response they evoke. A predominant Th17 response was observed,
accompanied by a mild Th2 response, which is different from the Th17/Th1 response evoked by H. pylori infection.

Introduction

The gastric mucosa of pigs is often colonized by H. suis
[1-5], a large spiral-shaped bacterium which is also the
most prevalent non-H. pylori Helicobacter species in
humans [6,7]. In pigs, H. suis infection has been asso-
ciated with gastritis, ulceration of the non-glandular part
of the stomach and a decreased daily weight gain [7-11].
In humans, H. suis infection may cause gastritis, peptic
ulcer disease and gastric mucosa-associated lymphoid
tissue (MALT) lymphoma [12-14]. Interestingly, the risk
of developing MALT lymphoma is higher after infection
with non-H. pylori Helicobacter species than after infec-
tion with H. pylori [12,15].
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For H. pylori, it is well known that different strains
may vary in virulence and in the host immune response
they evoke [16,17]. This host immune response plays an
important role in induction and evolution of gastric
lesions and influences colonization of the gastric mucosa
by H. pylori [16]. For H. suis, however, nothing is known
about possible differences in virulence between bacterial
strains. Some studies have attempted to characterize the
evoked immune response in the mouse, an animal spe-
cies which has most often been used to model gastric
Helicobacter infection. However, because of the fastidi-
ous nature of this micro-organism, these experimental
infection studies were carried out using impure mucus
or homogenized gastric tissue from infected mice, pigs
or non-human primates, thus hampering interpretation
of these results [18-20].

Besides the possible difference in virulence and im-
mune response evoked by different bacterial strains, also
the choice of the murine strain is important. Inbred
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mouse strains can vary greatly in colonization suscepti-
bility and their immune response towards Helicobacter
infections [21-23]. C57BL/6 mice have been described
genetically as Thl responders, whereas BALB/c mice are
considered predominant Th2 responders [24,25]. There-
fore, in the present study, BALB/c and C57BL/6 mice
were used to compare colonization ability and host
responses after inoculation with nine different H. suis
strains. The local immune response was investigated and
compared to that evoked by infection with H. pylori.

Material and methods

Bacterial strains

H. suis strains HS1, HS2, HS3, HS4, HS5, HS6, HS7,
HS8, HS9 were isolated from the stomachs of pigs
belonging to different herds. Results from Multilocus
Sequence Typing have shown that these isolates indeed
correspond to 9 different strains (Liang et al., unpub-
lished observations). The strains were grown for 72 h as
described previously [23] under microaerobic conditions
(37°C; 85% N5, 10% CO,, 5% O,) on biphasic Brucella
(BD, Franklin Lakes, NJ, USA) culture plates supplemen-
ted with 20% fetal calf serum (HyClone, Logan, UT,
USA), 5 mg/L amphotericin B (Fungizone; Bristol-Myers
Squibb, Epernon, France), Campylobacter selective sup-
plement (Skirrow; Oxoid, Basingstoke, UK) and Vitox
supplement (Oxoid). In addition, the pH of the agar and
overlying broth was adjusted to 5.

The mouse-adapted H. pylori strain SS1 and its parental
strain pMSS1 were grown for 48 h at 37°C under micro-
aerobic conditions on Columbia agar plates containing
5% sheep blood (Oxoid, Basingstoke, UK). Subsequently,
colonies were picked up and cultured in Brucella broth
(without pH adjustment), supplemented with Skirrow and
Vitox, on a rotational shaker under microaerobic condi-
tions (16 h, 150 rpm).

Animals and experimental design

Seven-week-old, female specific-pathogen-free BALB/c
and C57BL/6 mice, free of Helicobacter spp., were pur-
chased from Harlan NL (Horst, The Netherlands). Both
for BALB/c and C57BL/6 mice, 9 groups consisting of 5
mice each were inoculated with different H. suis strains
twice with a 48 h interval. Under brief isoflurane anaes-
thesia and using a ball-tipped gavage needle, 250 pL
Brucella broth (pH5) containing 7 x 107 bacteria of the
different H. suis strains was administered intragastrically.
BALB/c and C57BL/6 control groups consisted of 5 mice
receiving an equal volume of Brucella broth with a pH
of 5. In order to compare the H. suis-induced T helper
cell response to that evoked by H. pylori infection,
BALB/c and C57BL/6 mice were likewise inoculated
twice with 250 pL Brucella broth (without adjusted pH)
containing 7 x 107 bacteria of H. pylori strains SS1 and
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pMSS1 (6 animals of each mouse strain for each H.
pylori strain). Six Brucella broth (without adjusted pH)-
inoculated BALB/c and C57BL/6 mice were included as
controls. Fifty-nine days after the first inoculation, all mice
were euthanized and the stomachs were removed for fur-
ther processing. All animal procedures were approved by
the Ethical committee of the Faculty of Veterinary Medi-
cine, Ghent University (EC2009/055 and EC2012/086).

Quantification of colonizing H. suis and H. pylori bacteria
The number of colonizing H. suis bacteria per mg gastric
tissue was determined by quantitative RT-PCR. In brief,
a 1146 bp segment of the ureB gene served as standard
(primers: UreaseB forward 5- CGG GAT TGA TAC
CCA CAT TC-3/; reverse 5'- ATG CCG TTT TCA TAA
GCC AC-3'). The copy number concentration was cal-
culated based on the length of the amplicon and the
mass concentration. The standard consisted of 10-fold
dilutions starting at 10’ PCR amplicons for each 10 pL
of reaction mixture. For enumeration of H. suis in stom-
ach samples, stomachs were homogenized in 1 mL TRI
Reagent RT (MRC, Brunschwig Chemie, Amsterdam,
The Netherlands) using a MagNA Lyser (Roche Applied
Science, Mannheim, Germany). After centrifugation of
the obtained homogenate, the interphase and organic
phase were stored at —20°C for DNA isolation for enu-
meration of H. suis bacteria. One pL of this extracted
DNA was used as template in 10 pL reactions, further con-
taining 5 pL iQ™ SYBR® Green Supermix and 5 pmol of
both primers, located within the 1146 bp fragment, to
yield a 218 bp PCR product (Sense primer: 5-TTA CCA
AAA ACA CCG AAG CC-3, antisense primer: 5-CCA
AGT GCG GGT AAT CAC TT-3; annealing temperature:
60°C). Both standards and samples were run in duplicate
and the average values were used for quantification of H.
Suis.

A similar DNA extraction method and RT-PCR was
applied for quantification of H. pylori. For generation
of the standard, part of the ureAB gene cluster from H.
pylori strain SS1 was amplified using consensus primers
U430F and U1735R, as described by O’Rourke et al.
[26]. For amplification of an internal 217 bp fragment,
the following primers were designed: 5-AAA GAG CGT
GGT TTT CAT GGC G-3' and 5-GGG TTT TAC CGC
CAC CGA ATT TAA-3'.

Cytokine expression

Quantitative Real-Time PCR (RT PCR) was used to exam-
ine cytokine expression in stomach tissue. After stomach
homogenization and centrifugation of the obtained hom-
ogenate as described above, the interphase and organic
phase were stored at —20°C for DNA isolation for enumer-
ation of H. suis or H. pylori bacteria (see above). Total RNA
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was extracted from the upper aqueous phase using the
RNeasy mini kit (Qiagen, Venlo, The Netherlands) accord-
ing to the manufacturer’s guidelines. RNA (1 pg) was re-
verse transcribed to cDNA with the iScript cDNA synthesis
kit using a mix of oligo(dT) and random hexamer primers
(Biorad, Nazareth, Belgium), and mRNA expression levels
of various cytokines (IL-1p, IL-2, IL-4, IL-5, IL-6, IFN-y, IL-
10, IL-12b, IL-17, TNF-a and MIP-2 for H. suis-infected
mice; IL-4, IL-10, IL-17, IEN-y for H. pylori-infected mice;
primer sequences are shown in Table 1) was quantified
using SYBR Green based RT PCR with iQ™ SYBR® Green
Supermix and performed on a CFX96 RT PCR System
with a C1000 Thermal Cycler (Biorad). The housekeeping
genes H2afz, PPIA and HPRT were shown to have a sta-
ble mRNA expression in all samples tested (data not
shown) and were included as references. Reactions were

Table 1 List of genes and sequences of the primers used
for RT-PCR gene expression analysis

Gene Primer Primer sequence
HPRT sense 5'- CAG GCC AGA CTT TGT TGG AT-3
antisense 5'-TTG CGC TCA TCT TAG GCT TT-3/
PPIA sense 5-AGC ATA CAG GTC CTG GCA TC-3'
antisense 5'-TTC ACC TTC CCA AAG ACC AC-3
H2afz sense 5'-CGT ATC ACC CCT CGT CAC TT-3'
antisense 5'-TCA GCG ATT TGT GGA TGT GT-3’
IL-18 sense 5'- GGG CCT CAA AGG AAA GAA TC-3'
antisense 5'-TAC CAG TTG GGG AAC TCT GC-3/
-2 sense 5-TTT CAA TTG GAA GAT GCT GAG A-3'
antisense 5'-AGG GCT TGT TGA GAT GAT GC-3’
IL-4 sense 5"-ACT CTT TCG GGC TTT TCG AT-3’
antisense 5"-AAA AAT TCA TAA GTT AAA GCA TGG TG-3'
IL-5 sense 5-GTG GGG GTA CTG TGG AAA TG-3
antisense 5'-TCC TCG CCA CAC TTC TCT TT-3’
IL-6 sense 5-CAA AGC CAG AGT CCT TCA GAG-3'
antisense 5'-GCC ACT CCT TCT GTG ACT CC-3’
IFN-y sense 5'- GCG TCA TTG AAT CAC ACC TG-3'
antisense 5-TGA GCT CAT TGA ATG CTT GG-3'
IL-10 sense 5'-ATC GAT TTC TCC CCT GTG AA-3’
antisense 5"-CAC ACT GCA GGT GTT TTA GCT T-3'
I-12b sense 5-TAA CCA GAA AGG TGC GTT CC-3'
antisense 5'-CTT TCC AAC GTT GCA TCC TA-3'
IL-17 sense 5'-TTT AAC TCC CTT GGC GCA AAA-3
antisense 5'-CTT TCC CTC CGC ATT GAC AC-3
TNF-a sense 5"-CAA ATG GCC TCC CTC TCA T-3’
antisense 5'-GGT TGT CTT TGA GAT CCA TGC-3
MIP-2 sense 5'-AAA GTT TGC CTT GAC CCT GA-3'
antisense 5'-TCC AGG TCA GTT AGC CTT GC-3
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performed in 10 pL volumes containing 5 pmol of both
forward and reverse primers, 5 pL iQ™ SYBR® Green
Supermix and 1 pL cDNA. The thermal cycle program
consisted of 95°C for 15 min, followed by 40 cycles of
denaturation at 95°C for 20 s and annealing/extension at
60°C for 30 s. The threshold cycle values (Ct) were first
normalized to the geometric means of the reference genes
and the normalized mRNA levels were calculated accord-
ing to 2788 method for each individual animal [27].

Data analysis

For relative gene expression, assessment of significance
was done with SPSS19 software, using a non-parametric
Mann—Whitney U test, or with the Relative Expression
Software Tool (REST 2009 V2.0.13). A Bonferroni cor-
rection was applied to investigate differences between
groups regarding gene expression. A non-parametric
Kruskal-Weallis and post-hoc Mann—Whitney U test with
Bonferroni correction (SPSS 16) was used to investigate
colonization differences. For correlation between differ-
ent variables, Spearman’s rho correlation coefficients
were calculated. Data is expressed as the mean + stand-
ard deviation. In general, p values < 0.05 were consid-
ered statistically significant.

Results

H. suis colonizes C57BL/6 mice to a higher degree
compared to BALB/c mice

Fifty nine days after the first inoculation, colonizing H.
suis bacteria were enumerated. All mice, except the con-
trols, were colonized by H. suis bacteria, regardless of
the mouse strain or H. suis strain involved. The detec-
tion limit was 180 bacteria per mg tissue. Generally,
BALB/c mice showed 3.5 times lower bacterial numbers
in gastric tissue compared to C57BL/6 mice (p < 0.001).
The mean number of bacteria/milligram tissue was 2.40
(+ 0.27) x 10° bacteria for BALB/c mice (n = 44),
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Figure 1 Number of colonizing H. suis bacteria. Shown is the
average number of H. suis bacteria/milligram tissue in the stomach
of BALB/c and C57BL/6 mice 59 days after experimental infection.
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compared to 8.37 (+ 1.02) x 10° bacteria for C57BL/6
mice (n = 44). The H. suis strains were not different
from each other in their capacity to colonize mice. Data
is summarized in Figure 1.

In the H. pylori-infected groups, lower colonization rates
were observed compared to H. suis: 1.63 (+ 1.16) x 10
bacteria/mg tissue for pMSS1-infected C57BL/6 mice; 4.65
(+ 4.64) x 10” bacteria/mg tissue for SS1-infected C57BL/6
mice; 2.95 (+ 248) x 10% bacteria/mg for SSl-infected
BALB/c mice. Strain pMSS1 could not be demonstrated in
the stomach of BALB/c mice 59 days after inoculation.

All 9 H. suis strains induce a predominant Th17 response
in both BALB/c and C57BL/6 mice

To investigate the immune response of BALB/c and
C57BL/6 to different H. suis strains, cytokine expression
was evaluated. Results are shown in Figures 2 and 3.

IL-2 is a pleiotropic cytokine playing an important role
in proliferation of lymphocytes and modulation of effector
(T) cell differentiation, including inhibition of Th17 devel-
opment. For this cytokine, no difference in expression was
observed between H. suis-infected and non-infected con-
trol mice. Compared to control animals, with fold change
mRNA expression levels equal to 1.0, the mean relative
expression was 1.11 + 0.82 and 1.03 + 0.58 fold for H.
suis-infected BALB/c and C57BL/6 mice, respectively.

Also for IFN-y, a signature Th1l marker, no differences in
expression were observed between H. suis-infected and
control mice. Compared to control animals, the mean rela-
tive expression was 1.32 + 1.29 and 0.94 + 0.61 fold for H.
suis-infected BALB/c and C57BL/6 mice, respectively. This
striking absence of a Thl response was confirmed by the
lack of proinflammatory IL-12b upregulation. In contrast,
a statistically significant upregulation of IFN-y expression
was observed for H. pylori pMSS1-infected C57BL/6 mice
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(24 £ 061 fold; p < 0.05). H pylori strain SS1 did not
cause a significant upregulation of IFN-y expression, nei-
ther in BALB/c mice (2.67 + 2.10 fold; p = 0.151), nor in
C57BL/6 mice (1.0 + 0.15 fold; p = 0.631).

In general, compared to uninfected animals, expression
of IL-4, a Th2 signature cytokine, was upregulated in H.
suis-infected mice from both strains (2.60 + 1.58 fold for
BALB/c mice, p < 0.01; 2.16 + 1.88 fold for C57BL/6 mice,
p < 0.05). This increased mRNA expression level was not
observed for all H. suis strains: 3 and 1 out of 9 H. suis
strains caused an upregulation of IL-4 in BALB/c and
C57BL/6 mice, respectively, as shown by a p value below
0.0056, the new cut-off p value obtained after Bonferroni
correction. However, p values for an additional 4 and 2
strains were lower than 0.05, further confirming this trend
towards a Th2 response. In H. pylori SS1- or pMSSI-
infected mice, no upregulation of IL-4 was observed.

No differences in IL-5 expression were detected when
comparing uninfected and H. suis-infected animals.

Compared to uninfected animals, expression of IL-6,
involved in Th2 and Th17 differentiation, was upregulated
in H. suis-infected animals from both mouse strains (mean
fold change: 4.67 + 2.92 for BALB/c mice; 2.89 + 2.45 for
C57BL/6 mice) (p < 0.01). This increased mRNA expres-
sion level was observed for 6 out of 9 strains in C57BL/6
mice and even for 8 out of 9 H. suis strains in BALB/c
mice when ignoring Bonferroni correction. A significant
inverse correlation was observed between IL-6 expression
and H. suis colonization (Figure 4a; p < 0.01; p = —0.238).

In contrast to the absent upregulation of Thl cytokines
and the mild upregulation of Th2 markers, a clear Th17
response was observed in both mouse strains for all H.
suis strains, as illustrated by a marked IL-17 upregulation
(p < 0.01). The mean upregulation of IL-17 in BALB/c mice
was 16.21 + 13.32 fold and 9.79 + 1041 fold in C57BL/6
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Figure 2 General cytokine expression profile after experimental H. suis infection in BALB/c and C57BL/6 mice. Shown are the mean fold
changes in mRNA expression of indicated cytokines in H. suis-infected BALB/c and C57BL/6 mice. The mean fold change in the relevant
uninfected control groups is equal to 1. An * indicates a statistically significant difference compared to uninfected control mice (p < 0.05).
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mice. A significant inverse correlation was observed
between IL-17 expression and colonization (p < 0.01;
p = -0.295) (Figure 4b). Also in H. pylori-infected mice, a
significant upregulation of IL-17 expression (up to 65 fold
in SS1-infected BALB/c mice) could be observed.

C57BL/6 mice but not BALB/c mice upregulate IL-13
expression as a response to H. suis colonization

Three important proinflammatory mediators of the innate
immune system, TNF-o, MIP-2 and IL-1[, were also inves-
tigated (Figures 2 and 3). IL-1p was significantly upregu-
lated only in the C57BL/6 strain: 7 out of 9 H. suis strains
caused an upregulation (p < 0.0056) and overall average
expression was 3.60 + 1.22 fold. Generally, only in C57BL/6
mice, a slight upregulation of MIP-2 was observed (2.21
+ 1.39 fold) (p < 0.05). For MIP-2 and IL-1p, a significant
inverse correlation was observed between increased expres-
sion and H. suis colonization in C57BL/6 mice (p = -0.297,
p < 005 p = -0.323, p < 0.05; Figures 4c and 4d). No
changes in mRNA expression of TNF-a were detected.

Anti-inflammatory IL-10 is upregulated both in BALB/c
and C57BL/6 mice during colonization by H. suis

As presented in Figures 2 and 3, increased expression of
IL-10 was observed in both mouse strains inoculated
with H. suis (2.92 + 2.02 fold for BALB/c mice; 2.82 +
1.41 fold for C57BL/6 mice) (p < 0.05). Similar levels of
IL-10 upregulation were observed in H. pylori-infected
mice of both strains.

When taking all H. suis-infected animals from both
mouse strains into account, IL- 10 expression did not
correlate with colonization (p > 0.05). This was, however,
the case when analysis was restricted to H. suis-infected
BALB/c mice (p = 0.249, p < 0.05; Figure 4e).

Discussion

In the present study, all 9 H. suis strains were able to
persist in the stomach of 2 different mouse strains at
relatively high colonization levels compared to H. pylori.
Most likely, colonization with H. suis is achieved more
easily compared to H. pylori, which often requires prior
adaptation to mice. This was underlined by the higher
colonization rates observed for the mouse-adapted H.
pylori SS1 strain, compared to the parental pre-mouse
SS1 (pMSS1) strain [28,29]. The ease by which mice be-
come infected with H. suis warrants further research on
the role of mice in the epidemiology of H. suis infections
in pig herds.

In general, H. suis-infected BALB/c mice showed lower
colonization rates compared to C57BL/6 mice. A discrep-
ancy between the colonization of BALB/c and C57BL/6
mice has also been described for other gastric helicobac-
ters such as H. felis and H. pylori [21,30,31]. The higher
inflammatory response, as observed histologically in the
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stomach of BALB/c mice infected with H. suis [23], may
create a hostile and unfavourable environment for the bac-
terium, as has been suggested previously [32]. One pos-
sible factor contributing to the lower degree of H. suis
colonization observed in BALB/c mice, could be the more
pronounced Th17 response in this mouse strain. Although
in both mouse strains an infection with H. suis induced an
upregulation of IL-17 mRNA, the response was signifi-
cantly higher in BALB/c mice. A clear inverse correlation
between IL-17 mRNA and IL-6 mRNA (promoting Th17)
expression levels on the one hand and H. suis colonization
on the other hand was observed in this study, which
largely corresponds to what has been described for H.
pylori. Indeed, most studies reveal a negative correlation
between a fully functional Th17 response and H. pylori
colonization [33,34], although some authors suggest the
opposite [35].

Besides a Th17 response, H. pylori has been shown to
upregulate the Thl response both in humans and in
mouse models [35-37]. This was indeed confirmed in
this study with H. pylori strain pMSS1, although levels
of IFN-y upregulation were increased only mildly. Inter-
estingly, no increased expression of IFN-y, a signature
Th1 cytokine, could be observed in H. suis-infected ani-
mals in the present study, neither in BALB/c mice nor
in Thl-prone C57BL/6 mice [24,25]. In contrast, most
H. suis strains caused an upregulation of the Th2 signa-
ture cytokine IL-4, which was most pronounced in
BALB/c mice. A similar upregulation was absent in H.
pylori-infected mice, clearly highlighting the differences
in the immune response elicited in mice infected with H.
pylori (Th17/Thl) compared to mice infected with H.
suis (Th17/Th2). Moreover, the results obtained in this
study correspond to the histological changes observed in
mice and Mongolian gerbils infected for up to 8 months
with H. suis strain 5 [23]. In this study, only in BALB/c
mice infected with HS5 for 8 months, an increased B cell
accumulation was observed, further underlining the in-
volvement of a Th2-polarized response [25]. Interest-
ingly, a Th2 response, rather than a Thl-predominant
response, has been associated with the development of
low-grade B cell MALT lymphoma [38,39], which has in-
deed been associated with gastric non-H. pylori Helico-
bacter infection, including H. suis [12].

As discussed above, the overall inflammatory response,
including the Thl7 response, is stronger in H. suis-
infected BALB/c mice, compared to C57BL/6 mice. IL-10,
often produced by regulatory T cells (Treg’s), is a suppres-
sive cytokine that acts through downregulation of several
pro-inflammatory cytokines and the resulting decrease of
inflammatory cell recruitment [40]. For H. pylori, it has
been shown that infection suppresses the effective induc-
tion of H. pylori—specific Th17 immunity through the in-
duction of a Treg response [34]. A positive correlation
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between expression of IL-10, a suppressive cytokine, and
H. suis colonization could be observed only in BALB/c
mice, although similar levels of IL-10 expression were
observed in H. suis-infected mice from both strains. So
most likely, other mechanisms, such as the difference in
IL-6 expression, are involved since this cytokine promotes
a Th17, as well as a Th2 response, both of which are more
pronounced in BALB/c mice [34,41].

In a previous experimental infection study in mice with
H. suis strain HS5, we observed only a mild increase of
macrophage infiltration in the corpus of the stomach at 21
and 63 days after infection, but not at 8 months post infec-
tion [23]. In the present study, no significant upregulation
of TNF-a and IL-12 expression was observed in animals
infected with H. suis for 59 days. Possibly, the absent upre-
gulation of these macrophage-secreted cytokines reflects
the return of macrophage infiltration to baseline levels
after a possible mild increase during the initial weeks of H.
suis infection.

Only in C57BL/6 mice, an IL-1p upregulation was
observed in H. suis-infected animals. It has been shown that
this pro-inflammatory cytokine also plays an important role
in the inhibition of gastric acid secretion and the deve-
lopment of severe hyperplastic and dysplastic glandular
changes [42,43]. However, previous experiments showed
that these lesions do not develop in C57BL/6 nor BALB/c
mice after long-term (8 months) infection with H. suis [23].
Instead, lymphoid tissue lesions develop both in mice and
Mongolian gerbils, which contrasts to the predominant
metaplastic/dysplastic changes observed during long-term
H. pylori infection [23,44].

Although all H. suis strains included in this study
induced a similar immune response, some remarkable
differences could be observed. Most H. suis strains
caused no significant upregulation of IL-4 in C57BL/6
mice, although this was the case for HS1. In addition,
HS1 induced the strongest upregulation in this mouse
strain of IL-6, involved in Th17 and Th2 differentiation.
On the other hand, only one strain, HS6, showed a
complete lack of IL-4, IL-6 and IL-10 upregulation in
both mouse strains. This clearly shows that mild strain
differences exist in the immune response evoked by H.
suis in the murine host. Although this is most likely
also the case in infected humans and pigs, this remains
to be investigated.

For H. pylori, differences in the host response evoked by
different strains have been associated with the presence, ab-
sence or functionality of several virulence-associated genes,
for instance those belonging to the cytotoxin-associated
genes pathogenicity island (cagPAI) and the vacuolation
cytotoxin A encoding gene vacA [45-47]. H. suis lacks most
of the genes of the cagPAI and does not produce a func-
tional vacuolating cytotoxin A [48]. One of its main viru-
lence factors, capable of modulating lymphocyte function
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through its effects on lymphocyte proliferation and cyto-
kine secretion, is the gamma-glutamyl transpeptidase [49].
It remains to be determined if differences in production of
this enzyme by different H. suis strains, as has indeed been
observed in vitro [50], play a role in the mild variation of
the immune response described in the present study.

In conclusion, all 9 H. suis strains were capable of col-
onizing mice, but the numbers of H. suis bacteria were
lower in the stomach of BALB/c mice. Although differ-
ences between H. suis strains were observed, colonization
generally caused a predominant Th17 response, mainly in
BALB/c mice, accompanied by a less pronounced Th2
response for most H. suis strains. This contrasts with the
immune response induced by H. pylori infection, charac-
terized by a Th17/Th1 response and the absence of a Th2
response. Despite a clear immune response evoked in the
murine host, infection persisted in all H. suis-inoculated
animals.
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