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Immunization with the immunodominant
Helicobacter suis urease subunit B induces
partial protection against H. suis infection
in a mouse model
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Abstract

Helicobacter (H.) suis is a porcine and human gastric pathogen. Previous studies in mice showed that an H. suis
infection does not result in protective immunity, whereas immunization with H. suis whole-cell lysate (lysate)
protects against a subsequent experimental infection. Therefore, two-dimensional gel electrophoresis of H. suis
proteins was performed followed by immunoblotting with pooled sera from H. suis- infected mice or mice
immunized with lysate. Weak reactivity against H. suis proteins was observed in post-infection sera. Sera from
lysate-immunized mice, however, showed immunoreactivity against a total of 19 protein spots which were
identified using LC-MS/MS. The H. suis urease subunit B (UreB) showed most pronounced reactivity against sera
from lysate-immunized mice and was not detected with sera from infected mice. None of the pooled sera detected
H. suis neutrophil-activating protein A (NapA). The protective efficacy of intranasal vaccination of BALB/c mice with
H. suis UreB and NapA, both recombinantly expressed in Escherichia coli (rUreB and rNapA, respectively), was
compared with that of H. suis lysate. All vaccines contained choleratoxin as adjuvant. Immunization of mice with
rUreB and lysate induced a significant reduction of H. suis colonization compared to non-vaccinated H. suis-infected
controls, whereas rNapA had no significant protective effect. Probably, a combination of local Th1 and Th17
responses, complemented by antibody responses play a role in the protective immunity against H. suis infections.
Introduction
Helicobacter (H.) suis is a world-wide spread pathogen,
mainly colonizing pigs. An infection with this Gram-
negative bacterium has been associated with ulcers of
the gastric non-glandular mucosa [1,2] and causes gas-
tritis and decreased daily weight gain [3] in pigs. H. suis
is also the most prevalent non-Helicobacter pylori Heli-
cobacter species in humans suffering from gastric disor-
ders [2] and pigs may serve as a source of H. suis
infections for humans [2,4]. Control of H. suis infections
by antibiotic-based therapy is not recommended partly
due to an increased risk of developing acquired anti-
microbial resistance in H. suis strains and in bacteria
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belonging to the normal porcine microbiota [5]. Immu-
nization against H. suis may therefore represent a
valuable alternative. Up to now, however, few studies
have dealt with vaccination against this porcine and zoo-
notic pathogen.
Previous studies in a mouse model showed that an H.

suis infection does not result in protective immunity,
whereas vaccination based on homologous (H. suis) or
heterologous (H. bizzozeronii or H. cynogastricus) whole-
cell lysate induced a reduction or even complete clear-
ance of gastric colonization with H. suis [6]. However,
the use of this type of vaccines has drawbacks, including
the laborious in vitro culture of H. suis, which results
in difficulties to produce sufficient antigen. Also, whole-
cell lysates may contain both protective antigens and
antigens suppressing protection [7]. An effective sub-
unit vaccine might be a useful alternative for control
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of H. suis infections. Immunoproteomics is an appro-
priate approach for rapid identification of candidate
proteins for vaccination and has been applied to
study and develop subunit vaccines for a wide range of
pathogens [8].
It was the aim of the present study to select H. suis

proteins which might induce protective immunity
against H. suis infection. Therefore, H. suis proteins
recognized by sera of mice immunized with H. suis
whole-cell lysate and protected against infection were
identified by using two-dimensional (2D) gel electro-
phoresis followed by immunoblotting and LC-MS/MS.
Sera of H. suis- infected mice were also included, since
an infection does not result in protection. Based on this
analysis, the immunoreactive H. suis urease subunit B
(UreB) was selected for further in vivo testing. As a con-
trol we included the H. suis neutrophil-activating protein
A (NapA), which has been previously described as a pos-
sible virulence factor [9] but was not recognized by sera
of mice immunized with whole-cell lysate. Subsequently,
the protective efficacy against an H. suis infection of
both subunit vaccines was evaluated and compared with
that of H. suis lysate in a standardized mouse model.

Materials and methods
Bacterial strain
In all experiments, H. suis strain 5 (HS5, GenBank:
ADHO00000000) was used. This strain was isolated
from the gastric mucosa of a pig according to the
method described by Baele et al. [10].

Animals
One week prior to the initiation of the experiments,
five-week-old specific-pathogen-free female BALB/c mice
were obtained from an authorized breeder (HARLAN,
Horst, The Netherlands). The animals were housed on
sterilized wood shavings in filter top cages. They were
fed with an autoclaved commercial diet (TEKLAD
2018S, HARLAN) and received autoclaved water ad
libitum. All laboratory animal experiments were approved
by the Animal Care and Ethics Committee of the Faculty
of Veterinary Medicine, Ghent University.

Immunoproteomics of H. suis
Two-dimensional gel electrophoresis (2D-PAGE)
HS5 was grown as described previously [11]. Bacteria
were harvested by centrifugation (5000 g, 4°C for
10 min) and washed four times with Hank’s balanced
salt solution (HBSS). Total proteins (both soluble
and insoluble proteins) were extracted in two steps using
the ReadyPrep™ Sequential Extraction Kit (Bio-Rad,
Hercules, CA, USA) according to manufacturer’s
instructions. In order to obtain good 2D-PAGE results,
the homogenates were treated with proper additives
(5 mg protease inhibitor cocktail, 1 μL DNAse I, 1 μL
RNAse A, 10 μL phosphatase inhibitors PP2 and PP3
(Sigma-Aldrich, Steinheim, Germany)). Finally, the pro-
tein concentration was determined using the RC DC
Protein Assay (Bio-Rad) and proteins were stored at
−70°C till further use. A total of 100 μg of HS5 proteins
were rehydrated in 200 μL rehydration buffer (7M
ureum, 2M thioureum, 2% CHAPS, 0.2% carrier ampho-
lyte pH3-4, 100mM dithiothreitol (DTT) and bromophe-
nol blue). Samples were passively absorbed into a
ReadyStrip (11 cm, pH3 to pH10, Bio-Rad) and iso-
electric focusing was carried out in a Protean IEF
Chamber (Bio-Rad) as previously described [12]. After
iso-electric focusing, the strips were equilibrated for
15 min in 1.5% DTT in equilibration buffer (50mM
TrisHCl, pH 8.8 6M urea, 20% glycerol, 2% SDS) fol-
lowed by another equilibration in 4% iodoacetamide in
equilibration buffer. Gel electrophoresis was carried out
on a 10% TrisHCl SDS-PAGE using 150V for 30 min,
followed by 200V for 1 h. Two gels were run in parallel:
one was stained with SyproW Ruby Protein Gel staining
(Bio-Rad) while the other was used for immunoblotting
(see Western blotting described below). Prior to staining,
gels were fixed in 10% MeOH, 7% acetic acid. After
staining, H. suis proteins were visualized using the
VersaDoc Imaging System (Bio-Rad).

Serum pools
Three pools of mouse sera were used in this study:

� Sera from mice immunized with H. suis whole-cell
lysate (hereafter referred to as “lysate-immunized
mice”) (n = 10). These animals were inoculated
intranasally twice with three weeks interval with
100 μg HS5 lysate + 5 μg cholera toxin (CT) (List
Biological Laboratories Inc., Madison, NJ, USA).
HS5 lysate was prepared as described previously
but without final filtration of the supernatant [6].
Three weeks after the last immunization, blood was
collected and sera were pooled. This immunization
protocol has been shown to be (partially) protective
against H. suis challenge [6] and the protective effect
was confirmed here in a preliminary experiment
(data not shown).

� Sera from H. suis-infected mice (hereafter referred
to as “infected mice”) (n = 10). These animals were
inoculated intragastrically with 200 μL Brucella
broth at pH 5, containing 108 freshly prepared
H. suis bacteria [11]. Four weeks after infection,
blood was collected and sera were pooled.

� Sera from negative control mice (n = 10). These
animals received HBSS intranasally twice with a
three weeks interval followed by intragastric
inoculation with 200 μL Brucella broth at pH5
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(4 weeks after last sham immunization). After four
weeks, blood was collected and sera were pooled.

All sera were stored at −70°C until further use.

Western blotting
Proteins were electrotransferred from gels onto nitrocel-
lulose membranes (Bio-Rad) as described elsewhere [12].
Membranes were blocked in 5% skimmed milk in phos-
phate buffered saline (PBS) (blocking buffer), incubated
overnight (ON) with diluted mouse sera (1/100 in block-
ing buffer) at room temperature (RT), rinsed in PBS with
0.3% Tween-20 (wash buffer) and incubated for 1 h at
RT with stabilized goat anti-mouse immunoglobulin G
(IgG) horseradish-peroxidase (HRP)-conjugated (1/1000
in blocking buffer, Pierce, Rockford, IL, USA). After a
wash step in wash buffer, immunodetection of proteins
was performed by enhanced chemiluminescence detec-
tion using Supersignal West Dura Extended Duration
Substrate (Pierce). Protein patterns were scanned and
digitized using the VersaDoc Imaging System. All experi-
ments were performed in triplicate.

In-gel protein digestion and identification by mass
spectrometry
In-gel digestion of proteins was performed as described
by Cheung et al. [13]. Prior to mass spectrometry
the isolated peptides were separated on a U3000 nano-
high-performance liquid chromatography (HPLC) (Dionex,
Sunnyvale, CA, USA) as previously described [14].
Identification of the peptides was performed using an

electrospray ionization quadrupole time-of-flight mass
spectrometry (ESI-Q-TOF) Ultima (Waters, Milford,
MA, USA) as described previously [14]. Data analysis
was performed against the Helicobacter protein database
from NCBI (146 612 entries) using the in-house search
engine Mascot Daemon (2.3, Matrix Science, London,
UK). An error tolerant search was performed with
carbamidomethyl (C) as fixed modification. Carbamido-
methyl (N-terminal) and oxidation (M) were set as vari-
able modifications. Peptide mass tolerance and fragment
mass tolerance was set at 0.35 Da and 0.45 Da, respect-
ively. Maximum two miscleavages were allowed. Proteins
were only considered to be correctly annotated when
the significance was below 0.05 (p < 0.05) and at least
one peptide passed the required bold red criteria from
Mascot Daemon, indicating that at least one peptide had
rank 1 and a significance below 0.05.

One-dimensional gel electrophoresis (1D-PAGE) and
Western blotting of rUreB
1D-PAGE of 10 μg recombinant H. suis urease subunit B
(rUreB) was performed as described by Van Steendam
et al. [12]. Sera preparation and Western blot analyses
were performed as described above.

Protective efficacy of recombinant H. suis proteins in a
mouse model
Preparation of recombinant UreB
A fragment encoding the H. suis UreB sequence (Gen-
Bank locus tag HSUHS5_0285) was amplified by PCR
using a Pwo polymerase with proofreading activity
(Roche, Mannheim, Germany) from the DNA of HS5
(forward primer: 5’- ATG AAA AAA ATC TCT AGG
AAA GAA TAT G -3’; reverse primer: 5’- CTA GTG
ATG GTG ATG GTG ATG GAA CAA GTT GTA GAG
TTG AGC -3’) and cloned into the protein expression
vector pET-24d. The rUreB was expressed in E. coli
strain BL21 (DE3). The cells were lyzed by sonication
(5 times for 30 s) in buffer containing 50mM Na.PO4

pH7, 0.5M NaCl, 1M DTT, 1% Triton X-100 and 1mM
PMSF. After centrifugation (4°C, 20 000 g for 30 min),
rUreB was purified from the soluble fraction using Ni-
affinity chromatography in buffer consisting of 1M NaCl,
50mM PBS, 1% Triton X-100, 250mM imidazole and
10% glycerol (His GraviTrap, GE Healthcare Bio-
Sciences AB, Uppsala, Sweden) followed by gel filtration
on a Superdex™ 200 HR 16/60 column (GE Healthcare
Bio-Sciences AB). After purification, rUreB was analyzed
using SDS-PAGE and Western blot analysis using anti-
hexahistidine-tag mouse monoclonal antibody (Icosagen
Cell Factory, Tartu, Estonia). The detergent Triton X-100
was removed from the purified rUreB by using Pierce
Detergent Removal Spin columns (Pierce) following
manufacturer’s instructions. Protein concentration was
determined with the RC DC protein Assay (Bio-Rad).

Preparation of recombinant NapA
The protein was expressed in the E. coli Expression Sys-
tem with GatewayW Technology (Invitrogen, Carlsbad,
CA, USA) as follows. A fragment encoding the H. suis
neutrophil-activating protein A (NapA) sequence (Gen-
Bank locus tag HSUHS5_0014) was amplified by PCR
using a Pwo polymerase with proofreading activity
(Roche) from the DNA of HS5 (forward primer: 5’-
CACCATG AAAGCAAAAACAGTTGATGTACTC -3’;
reverse primer: 5’- TTAAGCCAAACTTGCCTTAAG-
CATCC -3’) and cloned into the pENTR™/TEV/D-
TOPOW vector and transferred into the pDEST17™ des-
tination vector. The selected pDEST17-NapA plasmid
was transformed to the BL21-AI™ E. coli and sub-
sequently grown at 37°C to an OD600 of 0.6-1.0 in
Luria Broth supplemented with 50 μg/mL carbenicillin.
Recombinant H. suis NapA (rNapA) expression was
induced by adding 0.2% L- arabinose. After 4 h incuba-
tion at 37°C, the cells were harvested and resuspended
in lysis buffer: 50mM TrisHCl, 100mM NaCl, 1% Triton
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X-100, 0.2 mg/mL lysozyme, 20 μg/mL DNAse, 1mM
protease inhibitor (Sigma), and 1mM MgCl2. The
cells were lyzed by sonication (5 times for 30 s). Cell
debris and inclusion bodies were isolated by centrifuga-
tion at 4°C (20 000 g for 30 min). The inclusion bodies
were subsequently washed twice based on the follow-
ing protocol: the pellet was resuspended in cold lysis
buffer, sonicated 5 times for 30 s followed by centrifuga-
tion (4°C, 20 000 g for 30 min). The washed inclusion
bodies were solubilized in binding buffer, pH8 (6M
guanidium HCl, 20mM TrisHCl, 0.5M NaCl, 5mM imid-
azole, 1mM β-mercaptomethanol) by gentle rotation for
1 h at RT. Insoluble material was removed by high speed
centrifugation at 4°C (100 000 g for 30 min). rNapA was
purified from the clarified supernatant onto a Ni-
sepharose column (His GraviTrap, GE Healthcare Bio-
Sciences AB) according to the manufacturer’s instruc-
tions. rNapA was eluted with elution buffer, pH8 (8M
urea, 20mM TrisHCl, 0.5M NaCl, 0.5M imidazole, and
1mM β-mercaptoethanol) and ON dialyzed against PBS
at 4°C. Afterwards, rNapA was analyzed using SDS-
PAGE and protein concentration was determined using
RC DC Protein Assay (Bio-Rad).

Immunization and infection experiments
The experimental design is summarized in Figure 1.
Five groups of 10 mice were intranasally inoculated
twice with 3 weeks interval, each time with 17.5 μL in-
oculum. In groups 1, 2 and 3 the inoculum consisted of
HBSS with 5 μg CT, containing 30 μg rUreB, 30 μg
rNapA and 100 μg HS5 lysate, respectively. Groups 4
(sham-immunized group) and 5 (negative control group)
Arrival Immunization 

1st

Immunization 

2nd

1. rUreB rUreB rUreB

2. rNapA rNapA rNapA

3. Lysate Lysate Lysate

4. Sham-immunized HBSS HBSS

5. Negative control HBSS HBSS

-1 0 3

Actions

Timing (weeks)

Groups

Figure 1 Experimental design of vaccination study. Per group 10 mice
with 30 μg rUreB + 5 μg cholera toxin (CT); 30 μg rNapA + 5 μg CT, and 1
(sham-immunized group) and 5 (negative control group) were intranasally
blood was collected from 5 mice per group and one week later mice of gr
H. suis bacteria. Group 5 was intragastrically inoculated with HBSS. Four we
were inoculated with HBSS. Three weeks after the
second intranasal immunization, blood was collected
by tail bleeding from five animals per group and one
week later, all animals, except the negative control
group, were inoculated intragastrically with 200 μL
Brucella broth at pH 5 containing 108 viable H. suis bac-
teria [11]. The negative control group was inoculated
intragastrically with 200 μL Brucella broth at pH5.
Four weeks after the intragastric inoculation, mice
were euthanized by cervical dislocation following iso-
flurane anaesthesia (IsoFlo; Abbott, IL, USA). From
the euthanized animals, blood was collected by sterile
cardiac puncture, centrifuged (1000 g, 4°C, 10 min)
and serum was frozen at −70°C until further use.
Stomachs were excised and dissected along the greater
curvature. One-half of the stomachs, including antrum
and fundus, was immediately placed into 1 mL RNA
Later (Ambion, Austin, TE, USA) and stored at −70°C
for further RNA- and DNA-extraction. A longitudinal
strip of the gastric tissue was cut from the oesophagus
to the duodenum along the greater curvature for histo-
pathological examination.
Quantification of H. suis in the stomach
After thawing, stomach tissues were homogenized (Mag-
NAlyser, Roche, Mannheim, Germany) in 1 mL Tri
ReagentW RT (MRC, Brunschwig Chemie, Amsterdam,
The Netherlands) and DNA was extracted from the
inter- and organic phase according to Tri ReagentW RT
manufacturer’s instructions. The bacterial load in the
stomach was determined using the previously des-
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were intranasally immunized twice with 3 weeks interval, each time
00 μg HS5 lysate + 5 μg CT (groups 1, 2 and 3, respectively). Groups 4
inoculated with HBSS. Three weeks after the second immunization,
oups 1, 2, 3 and 4 were intragastrically inoculated with 108 viable
eks after intragastric challenge, mice were euthanized.
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cribed H. suis specific quantitative real-time PCR
(qPCR) [5].

Analysis of stomach cytokine response
The expression levels of IFN-γ, IL-4, IL-10, IL-17 and
TNF-α were assessed by qPCR using cDNA synthesized
from stomach tissue as described previously [15]. The
threshold cycle (Ct) values were normalized to the geo-
metric mean of the Ct-values from the reference genes
after which normalized mRNA levels were calculated
using the 2-ΔΔCt method [16].

Measurement of serum antibody responses by enzyme-
linked immunosorbent assay (ELISA)
The Protein Detector™ ELISA Kit (KPL, Gaithersburg,
MD, USA) was used to evaluate rUreB-, rNapA-, and
HS5 lysate specific IgG in serum. In brief, 96 well flat
bottom plates (Nunc MaxiSorp, Nalge Nunc Int., Roch-
ester, NY, USA) were coated with 2 μg/well of purified
rNapA, 1 μg/well of purified rUreB, or 1 μg/well of
H. suis whole cell proteins diluted in 100 μL coating buf-
fer (24 h, 4°C). After blocking with 1% bovine serum
albumin in PBS, 100 μL of 1/400 diluted serum was
added to each well. After further washing, 100 μL of
HRP-labeled anti-mouse IgG (H+L) in a final concen-
tration of 50 ng per well was added. Five minutes after
adding 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic
acid) (ABTS) peroxidase substrate solution, absorbance
was read at 405nm (OD405nm).

Histopathological examination
The longitudinal gastric tissue strips were fixed in 4%
phosphate buffered formaldehyde, processed by standard
procedures and embedded in paraffin. For evaluation
of gastritis, haematoxylin - eosin (HE) stained sections
of 5 μm were blindly scored based on the degree of infil-
trating lymphocytes, plasma cells and neutrophils, using
a visual analog scale similar to the Updated Sydney
System (on a scale of 0–3) [17] with the following speci-
fications for each gastritis score: 0 = no infiltration of
mononuclear and/or polymorphonuclear cells; 1 = mild
diffuse infiltration of mononuclear and/or polymorpho-
nuclear cells; 2 = moderate diffuse infiltration of mono-
nuclear and/or polymorphonuclear cells and/or the
presence of one or two inflammatory aggregates; 3 =
marked diffuse infiltration of mononuclear and/or poly-
morphonuclear cells and/or the presence of at least
three inflammatory aggregates.

Statistical analysis
Normality and variance homogeneity of data was ana-
lyzed by using D’Agostino-Pearson and Shapiro-Wilk
normality test. Significant differences in H. suis colo-
nization and mRNA cytokine expression among groups
were assessed by performing one-way ANOVA analysis.
Bonferroni’s multiple comparison test was used as post-
hoc when equal variances were assessed. Dunnett’s T3
post-hoc test was used when no equal variances were
assessed. OD405nm levels from ELISA and histological in-
flammation scores were compared by Kruskall-Wallis
analysis, followed by a Mann–Whitney U test. For corre-
lations between different variables, Spearman’s rho coef-
ficient (ρ) was calculated. GraphPad Prism5 software
(GraphPad Software Inc., San Diego, CA, USA) was
used for all analyses. Statistically significant differences
between groups were considered at p < 0.05.
Results
Immunoproteomics of H. suis
H. suis proteins were separated on 2D-PAGE (Figure 2a).
After 2D-immunoblotting with pooled sera from lysate-
immunized (Figure 2b) or H. suis-infected animals
(Figure 2c), a total of 19 immunoreactive protein spots
were selected. These spots were matched with the pro-
tein spots that could be seen in the parallel 2D-PAGE
(Figure 2a). Little reactivity against H. suis proteins was
observed in post-infection sera compared to the high re-
activity against sera from lysate-immunized mice. When
the blot was probed with a pool of sera obtained from
negative control mice, no specific immunoreactive pro-
tein spots were detected (Additional file 1). Spots of
interest (n = 19) were cut out of the gel, digested and
identified by means of LC-MS/MS analysis. The detailed
results of these proteins are summarized in Table 1.
Spots with the highest reactivity (spot 1 to 5) were iden-
tified as UreB. H. suis chaperonin GroEL, illustrated as
spots 9 and 10 on Figure 2a, showed also strong
hybridization with sera from lysate-immunized animals.
Additionally, sera from lysate-immunized mice showed
strong reactivity against the urease accessory protein
(UreH) and the urease subunit A (UreA) (spots 15 to
19), which was less pronounced in the infected group.
Weak reactivity against the major flagellin FlaA (spots 11
to 13) was present in both blots.
Confirmation of serum reactivity against rUreB
From the 2D-analysis, UreB showed distinct reactivity
with sera from lysate-immunized mice, which was not
observed in sera from non-immunized but infected
mice. In order to confirm these data, a 1D-PAGE loaded
with rUreB was performed, followed by immunodetec-
tion with sera from lysate-immunized and H. suis-
infected mice. Reactivity was only detected in the immu-
nized group and a distinct band was visible at ~ 63 kDa,
which corresponds to the molecular weight of UreB
(Additional file 2).
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Figure 2 H. suis 2D-proteome profile (A) and Western blots of a duplicate 2D-gel reacted with pooled sera of lysate-immunized mice
(B) or of H. suis-infected mice (C). 100 μg of total protein extract of H. suis was separated by 2D-electrophoresis using linear pH3 to10 gradient
in the first dimension and 10% TrisHCl SDS-PAGE in the second dimension. The separated proteins were detected by SYPROWRuby Protein
staining. The boxed areas indicate where immunoreactive antigens were excised from the gel and subjected to LC-MS/MS. Identified proteins are
indicated by the spot numbers given in Table 1. Boxes and numbers in red were identified as UreB. The position of molecular weight (MW) is
given on the right, and the pH is given at the bottom.
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Protective efficacy of recombinant H. suis proteins in a
mouse model
From the 2D-proteomics approach, H. suis UreB was
found to show a high reactivity with sera from
Table 1 Immunoreactive proteins of H. suis identified by LC-M

Spot
no.1

Protein name NCBI ID2

1 Urease subunit B EFX42254

2 Urease subunit B EFX42254

Threonyl-tRNA synthetase EFX41598

3 Urease subunit B EFX42254

4 Urease subunit B EFX42254

5 Urease subunit B EFX42254

6 30S ribosomal protein S1 EFX42427

Quinone-reactive Ni/Fe hydrogenase, large subunit EFX41851

Urease of H. heilmannii AAA65722

7 Methyl-accepting chemotaxis protein EFX43528

8 Elongation factor G EFX41637

9 Chaperonin GroEL EFX42237

10 Chaperonin GroEL EFX42237

Urease subunit B EFX42254

11 Flagellin A EFX41982

12 Flagellin A EFX41982

13 Flagellin A EFX41982

Trigger factor EFX42378

14 Hydrogenase expression/formation protein EFX41790

Nicotinate-nucleotide pyrophosphorylase EFX42191

7-alpha-hydroxysteroid dehydrogenase EFX41880

Conserved hypothetical secreted protein EFX42511

Hypothetical protein HSUHS5_0308 EFX42276

Peroxiredoxin EFX42277

15 Urease accessory protein EFX42255

16 Urease subunit A EFX42255

17 Urease subunit A EFX42255

18 Urease subunit A EFX42255

19 Urease subunit A EFX42255
1 Protein spot corresponding to position on gel and blots (see Figure 2).
2 NCBI: National Center for Biotechnology Information.
3 Theoretical isoelectric point (pI) and molecular weight (MW).
4 For Helicobacter data, Mascot scores greater than 40 are significant (p ≤ 0.05).
5 % of the protein sequence covered by the peptides identified.
lysate-immunized mice. Therefore, this protein was
selected for further in vivo analyses. In addition,
the H. suis NapA was tested. NapA has been pre-
viously described as a possible virulence factor of
S/MS

Gene pI3 MW3 No. matched
peptides

Mascot
score4

Cov.
(%)5

ureB 5.97 62.967 117 1589 72

ureB 5.97 62.967 80 1042 58

thrS 6.34 69.315 7 186 60

ureB 5.97 62.967 80 903 46

ureB 5.97 62.967 4 103 6

ureB 5.97 62.967 4 103 6

rpsA 8.29 64.051 23 625 28

hydB 8.22 64.943 19 520 28

8.86 25.844 8 258 26

7.1 48.907 35 905 50

fusA 5.15 77.242 57 1066 55

groEL 5.58 58.498 150 3085 78

groEL 5.58 58.498 135 2647 73

ureB 5.97 62.967 43 682 41

flaA 7.77 54.232 29 756 47

flaA 7.77 54.232 57 1294 62

flaA 7.77 54.232 46 1085 63

tig 5.13 49.587 12 343 24

hypB 5.59 27.617 15 314 35

nadC 6.46 30.591 11 219 25

6.62 28.246 6 186 24

hdhA 5.84 28.011 5 174 19

5.47 29.471 9 171 24

5.84 25.811 7 107 19

ureH 6.79 30.447 4 106 13

ureA 7.79 27.389 24 270 55

ureA 7.79 27.389 28 112 45

ureA 7.79 27.389 57 418 69

ureA 7.79 27.389 75 568 73
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H. suis [9], but was not detected by sera of lysate-
immunized mice.
During the immunization experiment but before intra-

gastric challenge, one animal from the rUreB immunized
group and two animals from the group immunized with
lysate died. The protective efficacy of rUreB, rNapA and
lysate is shown in Figure 3 and expressed as the number
of H. suis copies detected by qPCR in the stomach
of challenged mice. High levels of H. suis (> 105 copies
mg-1 stomach) were detected in the stomach of sham-
immunized mice. Prophylactic immunization with rUreB
induced a significant reduction in H. suis colonization
compared to sham-immunized mice (p < 0.001). In con-
trast, immunization with rNapA did not induce a signifi-
cant reduction (p = 0.14) in bacterial colonization.
Immunization with lysate resulted in a significant reduc-
tion of the bacterial load (p < 0.001), and in 50% of
the animals H. suis DNA was not detected by qPCR.
A significant lower gastric bacterial load was observed in
lysate-immunized mice compared to rUreB- and rNapA-
immunized mice (p < 0.01).
Stomach cytokine response
mRNA expression levels of cytokines (IFN-γ, TNF-α, IL-4,
IL-10, IL-17) in gastric tissue are illustrated in Figure 4.
Expression of IL-17, a marker for a Th17 response, was
increased (p < 0.05) in all immunized groups compared to
sham-immunized mice. The IFN-γ response was signifi-
cantly higher in rUreB- and lysate- immunized groups
compared to the sham-immunized group (p < 0.05 and
Figure 3 Protection against H. suis challenge after prophylactic
intranasal immunization. Bacterial load is illustrated as log (10)
of H. suis copies/mg stomach tissue. Individual mice are illustrated
as dots around the mean (lines). DL: detection limit of 43.9 copies
mg-1. Significant differences between immunized (rUreB, rNapA
and lysate) and sham-immunized, infected animals are noted by
*** p < 0.001. Results of negative controls were all situated below DL.
p < 0.01 respectively). Immunization with rNapA did not
result in increased IFN-γ expression levels compared to
sham-immunization (p > 0.05). When taking all groups
inoculated intragastrically with H. suis into account
(rNapA, rUreB, lysate and sham), a significant inverse cor-
relation was observed between IL-17 and IFN-γ response
on the one hand, and colonization on the other hand (ρ =
−0.388 and ρ = −0.816, respectively, p < 0.05). IL-10
expression levels in the lysate-immunized group were
significantly lower (p < 0.05) compared to all other groups
(rUreB, rNapA and sham). A significant correlation was
observed between IL-10 response and gastric colonization
(p < 0.01, ρ = 0.427). IL-4 expression levels were higher
in sham- and lysate-immunized groups compared to
rNapA- and rUreB- immunized groups. This was sig-
nificantly (p < 0.05) higher in lysate-immunized mice
compared to rNapA-immunized mice. For TNF-α no sig-
nificant differences in expression were observed between
immunized and sham-immunized groups.
Specific serum antibody response before and
after challenge
Three weeks after the last immunization and at euthan-
asia, serum was prepared for analysis of the serum-IgG
response against rNapA, rUreB, and lysate. Serum levels
of anti- rNapA, - rUreB and - lysate IgG of mice immu-
nized with respective antigens were significantly elevated
compared to negative controls at 3 week post-
immunization (Additional file 3) and to both negative
controls and sham-immunized mice at final euthanasia
(Figure 5). Mice immunized with lysate showed a rUreB-
specific serum IgG response but no rNapA-specific re-
sponse (Figure 5b and c). When taking all immunized
groups into account (rNapA, rUreB and lysate), a signifi-
cant inverse correlation (ρ = −0.783, p < 0.001) between
specific IgG and H. suis copies mg-1 stomach was
observed.
Histopathology
The overall gastric inflammation scores are presented in
Table 2. All negative control mice showed normal histo-
morphology with very little inflammatory cell infiltration
in the gastric mucosa. Sham-immunized mice developed
a weak to moderate gastric inflammation. In general,
higher inflammation scores were observed in the fundus
compared to the antrum. Mice immunized with lysate
showed a weak to moderate gastric inflammation, which
was not significantly different from that observed in
sham-immunized infected mice (p > 0.3). Although not
significant (p > 0.05), less severe inflammatory infiltra-
tion was observed in rNapA and rUreB-immunized mice
compared to mice immunized with lysate and sham-
immunized mice.
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Figure 4 Fold change in cytokine gene expression level in the stomach relative to negative control animals. The stomach mRNA
expression levels of cytokines (IL-4, IL-10, IL-17, IFN-γ and TNF-α) at final euthanasia were examined by qPCR. Data represent the normalized
target gene amount relative to the negative control group which is considered 1. Data are shown as means ± standard error of mean. Significant
differences between immunized (rUreB, rNapA and lysate) and sham-immunized, infected animals are noted by * p < 0.05 and ** p < 0.01.
Significant differences between immunized groups are noted by bars and * p < 0.05.
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Discussion
We previously demonstrated that immunization with
H. suis whole-cell lysate protected mice against a subse-
quent experimental H. suis infection and resulted in high
serum anti-H. suis IgG titers [6]. An H. suis infection, on
the other hand, did not result in protective immunity,
whereby significantly lower serum IgG titers were
observed compared to H. suis protected animals [6]. In
order to identify possible vaccine candidates, 2D-gel
electrophoresis of H. suis proteins was performed
followed by immunoblotting with pooled sera from
H. suis- infected mice or mice immunized with H. suis
whole-cell lysate. To our knowledge, this is the first
study describing the immunoproteome of H. suis. The
UreB protein showed a pronounced reactivity against
sera from immunized mice and was not detected with
sera from infected mice (Figure 2b and c). This protein
was therefore selected for further evaluation of its pro-
tective efficacy. We found that immunization with rUreB
resulted in a significant reduction of H. suis colonization
in the stomach. The urease protein is known to be cru-
cial for the survival of gastric Helicobacter species [2,18]
and vaccination with its subunit B (either natural or
recombinant) also induced partial protection against
H. pylori, H. felis and H. heilmannii [19-23].
Vaccination with rUreB did not induce complete pro-

tection against an experimental H. suis infection. In con-
trast, a complete clearance was observed in 50% of mice
immunized with whole-cell lysate, which is in line with
previously observed results [6]. Most probably, in order
to obtain a degree of protection which is similar to or
better than that induced by whole-cell lysate, additional
H. suis antigens will have to be included in subunit
vaccines. The H. suis chaperonin GroEL (spots 9 and 10)
is another protein that showed strong reactivity with
sera from lysate-immunized mice and might therefore
also be a candidate for inclusion in a subunit vaccine.
Indeed, oral vaccination with H. pylori Hsp60 or E. coli
GroEL induced a partial protection against H. pylori
challenge [24,25]. However, vaccination with this protein
has also been associated with post-immunization gastri-
tis [25]. Additionally, it has been demonstrated that anti-
bodies against H. pylori Hsp60 may be associated with
gastric cancer and - inflammation in humans [26-28].
Other immunoreactive protein spots identified in this
study include UreA, UreH, FlaA, trigger factor, hydro-
genase expression/formation protein, methyl-accepting
chemotaxis protein and elongation factor G. All these
proteins have also been identified in immunoproteomic
studies of H. pylori and seem to be essential for gastric
colonization of this bacterium [29]. Future research
is needed to determine the protective efficacy and pos-
sible side effects of vaccination with (combinations of )
these proteins.
NapA has been recognized as a key modulator in

H. pylori-induced gastritis [30] and has been proposed
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Figure 5 Serum antibody responses against lysate (A), rUreB (B) or rNapA (C) at euthanasia. The levels of specific IgG are shown as the
mean OD405 nm + SD. * p < 0.05, *** p < 0.001.

Vermoote et al. Veterinary Research 2012, 43:72 Page 10 of 13
http://www.veterinaryresearch.org/content/43/1/72
as a protective antigen and promising vaccine candidate
against H. pylori infections [31,32]. In the present study,
NapA was not recognized by the pooled sera from
lysate-immunized mice and intranasal immunization
with rNapA did not result in protection against H. suis
challenge, although it induced anti-rNapA IgG. The
reason for the different outcome in protection studies
with this protein in H. suis and H. pylori remains
unclear. Differences in vaccine preparations, adjuvants
and experimental infection models used may play a role.
Although the H. suis napA gene shows strong homology
with its H. pylori equivalent (99% of sequence aligned,
of which 83% conserved) [9], the role of NapA in the
pathogenesis of H. suis infections has not yet been deter-
mined and is not necessarily identical to that of
H. pylori.
Different immune mechanisms may be involved in

protection induced by the vaccines tested here. Serum
antibodies against rUreB or antigens present in H. suis
lysate were detected in mice vaccinated with rUreB or
lysate, respectively, while they were absent (rUreB) or
remarkably lower in non-vaccinated, infected mice. In
future studies it may be interesting to also determine
Table 2 Gastric inflammation scores in mice after immunizati

Group Inflammation score fundus1 Infl

0 1 2 3 0

rUreB 1 6 2 0 7

rNapA 4 6 0 0 8

Lysate 1 4 3 0 2

Sham-immunized 1 5 4 0 5

Negative control 10 0 0 0 10
1Shown are the number of animals per group with a specific overall inflammation s
rNapA (n = 10) or lysate (n = 8), sham-immunized and infected controls (n = 10) an
polymorphonuclear cells; 1, mild diffuse infiltration of mononuclear and/or polymor
polymorphonuclear cells and/or the presence of one or two inflammatory aggregat
cells and/or the presence of at least three inflammatory aggregates.
IgA antibody titers locally produced in the stomach.
The role of local and serum antibodies in protection
against a Helicobacter infection is, however, controver-
sial. Although several authors mentioned that they may
play a role in protection [33-38], results of other studies
indicate that prophylactic immunization against Helico-
bacter species does not require antibodies [39,40].
Whether circulating and/or local antibodies play a role
in protection against H. suis infections may be deter-
mined by using antibody-deficient mice or by passive
administration of serum antibodies [34,35,39-41].
In mice vaccinated with rUreB or lysate, mRNA

expression of IFN-γ, a signature Th1 cytokine, was sig-
nificantly higher after challenge with H. suis compared
to sham-immunized mice, and this was not demon-
strated for rNapA-immunized, not protected mice.
Moreover, a clear inverse correlation was observed
between the bacterial load and IFN-γ mRNA expression
levels. In non-vaccinated mice, an H. suis infection does
not induce a Th1 response and does not result in clear-
ance of the infection [15]. This indicates that production
of IFN-γ, elicited by immunization, could play a role in
suppression and clearance of H. suis.
on and infection

ammation score antrum1 Overall mean
inflammation score/group1 2 3

2 0 0 0.66

2 0 0 0.40

5 1 0 1.06

5 0 0 0.90

0 0 0 0.00

core in antrum and/or fundus: animals vaccinated with rUreB (n = 9),
d negative controls (n = 10). 0, no infiltration of mononuclear and/or
phonuclear cells; 2, moderate diffuse infiltration of mononuclear and/or
es; 3, marked diffuse infiltration of mononuclear and/or polymorphonuclear
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Expression levels of IL-17 after challenge with H. suis
were elevated in mice immunized with rUreB, rNapA
and lysate, compared to sham-immunized mice and also
for this cytokine, an inverse correlation with H. suis
colonization was observed. In non-vaccinated mice, an
H. suis infection mainly results in a Th17 response
and a secondary Th2 response, which is not able
to eradicate the infection although the Th17 response
inversely correlates with bacterial load [15]. This might
indicate that for a strong suppression or clearance of
H. suis, a combined Th17 and Th1 response in the
stomach is necessary, as was observed in the rUreB- and
lysate-vaccinated groups.
We observed that decreased expression levels of IL-10

were correlated with a reduction in gastric H. suis
colonization. This is not entirely unexpected, since IL-10
is a suppressive cytokine for Th17 and Th1. Addition-
ally, it has been shown that IL-10-deficient mice are able
to eradicate H. pylori infection [42].
After infection with H. suis, expression of IL-4, a

marker of a Th2 response, was higher in the lysate-
immunized group than in groups vaccinated with rUreB
and rNapA. Taken all results of the present study
together, there are indications that in addition to a
local Th1 and Th17 response, a Th2 response, probably
resulting in local production of antibodies, may help to
eradicate H. suis from the stomach. Indeed, only in the
lysate-immunized group, mice were able to clear H. suis
from the stomach. Further studies are, however, neces-
sary to confirm this hypothesis.
In lysate-immunized mice, H. suis colonization was sig-

nificantly lower than in the other experimentally infected
groups. However, histological examination revealed that
the inflammatory response in this group was almost
similar to that in sham-immunized, H. suis-infected
mice. For H. pylori too, a transient gastritis is often seen
after challenge of immunized mice [43]. It remains to be
investigated whether gastritis levels of lysate-immunized
mice would drop below gastritis levels of sham-
immunized animals after a longer period post challenge.
In conclusion, sera from lysate-immunized, protected

mice strongly react with H. suis UreB and immunization
with this antigen induced a significant reduction in
gastric H. suis colonization in challenged mice. Although
rUreB is a promising antigen candidate for the use in
vaccines against H. suis infections, further studies are
necessary to elucidate if inclusion of additional H. suis
antigens may improve the protective efficacy of subunit
vaccines. Also, results obtained in this mouse model
should be confirmed in pigs, which are the natural host
of H. suis. Probably, a combination of local Th1 and
Th17 responses, complemented by antibody responses
play a role in the protective immunity against H. suis
infections. The exact mechanism by which protection
against an H. suis infection is mediated remains however
to be elucidated.

Additional files

Additional file 1: Immunodetection of a 2D-Western blot with a
pool of control sera from H. suis-negative mice. 100 μg of H. suis total
protein extract was separated by 2D-electrophoresis using linear pH3
to10 gradient in the first dimension and 10% SDS-PAGE in the second
dimension. After transfer of the proteins onto a nitrocellulose membrane,
the 2D-immunoblot was analyzed by reacting with a pool of control sera
from 10 H. suis-negative mice. No specific immunoreactive protein spots
were detected.

Additional file 2: 1D-PAGE immunoblotting of rUreB. M: Protein
marker. Lane 1 and 2: 10 μg rUreB separated on 10% TrisHCl SDS-PAGE
and immunoblotted with serum of mice 3 weeks after immunization
with H. suis whole-cell lysate (1) or with serum of H. suis-infected mice at
four weeks post-infection (2). Both sera consisted of a pool of 10 animals.
Only in serum of immunized animals (lane 1) immunoreactivity against
rUreB is seen as a ~ 63 kDa band.

Additional file 3: Serum antibody responses against lysate, rUreB
and rNapA at three weeks post- immunization. Mice were immunized
twice with three weeks interval with 100 μg HS5 lysate plus 5 μg CT,
30 μg rUreB plus 5 μg CT or 30 μg rNapA plus 5 μg CT, respectively.
Three weeks after the last immunization blood was collected and serum
was prepared from 5 animals of each group. Data are shown as the
mean OD405 nm + SD. *** p < 0.001.
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