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Abstract 

Streptococcus suis is a gram-positive bacterium that causes meningitis, septicemia, endocarditis, and other disorders 
in pigs and humans. We obtained 42 and 50 S. suis isolates from lesions of porcine endocarditis and palatine ton-
sils, respectively, of clinically healthy pigs in Japan; we then determined their sequence types (STs) by multilocus 
sequence typing (MLST), cps genotypes, serotypes, and presence of classical major virulence-associated marker genes 
(mrp, epf, and sly). The 42 isolates from endocarditis lesions were assigned to a limited number of STs and clonal com-
plexes (CCs). On the other hand, the 50 isolates from tonsils were diverse in these traits and seemingly in the degree 
of virulence, suggesting that tonsils can accommodate a variety of S. suis isolates. The goeBURST full algorithm using 
tonsil isolates obtained in this study and those retrieved from the database showed that major CCs as well as many 
other clusters were composed of isolates originating from different countries, and some of the STs were very similar 
to each other despite the difference in country of origin. These findings indicate that S. suis with not only different 
but also similar mutations in the genome have survived in tonsils independently across different geographical loca-
tions. Therefore, unlike the lesions of endocarditis, the tonsils of pigs seemingly accommodate various S. suis lineages. 
The present study suggests that S. suis acquired its diversity by natural mutations during colonization and persistence 
in the tonsils of pigs.
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Introduction
Streptococcus suis (S. suis), a Gram-positive bacterium, 
is an important swine pathogen that causes meningitis, 
septicemia, sudden death, pneumoniae, and arthritis in 
farmed pigs. In contrast, clinically healthy pigs are often 
found to carry endocarditis during slaughter [1]. S. suis 
showed affinity to pig oral cavities, as 100% of exam-
ined pigs carried S. suis in their saliva [2, 3]. S. suis may 
also affect humans and other animals [4]. S. suis strains 
were classified into 35 serotypes (serotypes 1 to 34 and 
1/2 which reacts to antisera type 1 and 2) on the basis of 
the antigenicity of capsular polysaccharide antigens [5, 
6]. However, the serotypes 20, 22, 26, 32, 33 and 34 were 
moved from S. suis on the basis of molecular phyloge-
netic analyses, and the remaining 29 serotypes have so far 
been officially recognized as S. suis [7–9].

The capsule of S. suis is encoded by a cluster of capsular 
polysaccharide synthesis (cps) genes located in a single 
locus of the genome [10]. Typing of the cps gene for all 
serotypes by two-step multiplex PCR has been developed 
[11]. Conventional serotyping using serum agglutination 
is time-consuming and it is costly to purchase or prepare 
all the typing antisera; thus, it is ideal to conduct geno-
typing by PCR (referred to as cps genotyping) in advance, 
followed by serum agglutination test using expected anti-
sera. From investigations of field isolates of S. suis, most 
isolates from diseased pigs belonged to limited sero-
types (serotypes 2, 3, 7, and 9); in particular, the isolates 
of serotype 2 were highly virulent and most prevalent 
amongst all serotypes [1, 4, 5, 12].

The capsule of S. suis acts as an important virulence 
factor by escaping from phagocytosis by macrophages 
and neutrophils of the host defense system [13–15]. 
Since isogenic un-encapsulated mutants showed a low 
degree of virulence in pigs and mice, un-encapsulated 
S. suis is believed to be avirulent [16–18]. Furthermore, 
recent experiments of several serotypes and replacing 
the total cps gene cluster showed that the capsule itself 
altered the degree of virulence in S. suis [19]. In con-
trast, both encapsulated and un-encapsulated S. suis have 
been found to persist in lesions of porcine endocarditis 
[9]. Un-encapsulated isolates showed increased ability to 
adhere to porcine and human platelets and intercellular 
matrix proteins, to invade to cultured porcine cells, and 
to form biofilms [20–23]. In addition, the loss of the cap-
sule caused by spontaneous mutations in one or more of 
cps genes possibly occurred during persistent infection in 
pig bodies [8, 20, 24].

In addition to the capsule, many other potential viru-
lence factors have been described, including muram-
idase-released protein (MRP, encoded by mrp) [25], 
extracellular factor (EF, encoded by epf) [26], and suilysin 
(SLY, encoded by sly) [27]. The precise roles of MRP and 

EF have not been identified; however, these putative viru-
lence factors have been frequently found to be associated 
with highly virulent serotype 2 isolates [28, 29]. Although 
many additional virulence-associated markers have been 
proposed, the three markers of MRP, EF and SLY still 
commonly serve as classical virulence markers.

To date, genetic heterogeneity and the phylogenetic 
diversity of S. suis strains have been described using 
various molecular tools [30–36]. However, multilocus 
sequence typing (MLST) is currently one of the most 
valuable tools for examining the population structure 
and global distribution of S. suis [37–42]. Notably, the 
results of MLST analysis can be visualized by a bioinfor-
matic tool, goeBURST [43]. S. suis serotype 2 can be clas-
sified by MLST into more than 10 sequence types (STs), 
among which some closely related STs can be grouped 
as ST clonal complexes (CCs) by goeBURST. For exam-
ple, strains of S. suis serotype 2 with high virulence were 
classified into ST1 or ST7, which belonged to CC1. In 
contrast, some low or non-virulent strains were allotted 
to many other STs and could not be assigned to a certain 
CC [38, 40], indicating that there is higher diversity of 
low or non-virulent strains than highly virulent strains.

Through the use of the typing tools described above, 
many studies have been performed to elucidate the deter-
minant for the virulence of S. suis, utilizing isolates from 
both diseased and healthy pigs as well as human cases 
[28, 33, 44–47]. On the contrary, studies using compari-
son or population analysis of the low or non-virulent iso-
lates of S. suis are rare. In the present study, we focused 
on low or non-virulent isolates of S. suis from healthy 
pigs to examine their population structure and relation-
ship in order to clarify S. suis diversity. The total design of 
this study is depicted in Figure 1.

Materials and methods
Isolation and identification of S. suis
Organ samples were collected from 110 pigs shipped 
to a meat sanitary inspection station in Tokyo from 22 
farms in Tohoku and Kanto areas of Japan between 2015 
and 2021. All the pigs were considered clinically healthy 
before slaughter; however, at the time of inspection, 50 
pigs of marketing ages (approximately 6 months of age), 
reproductive ages (2 to 3 years of age), and age unknown 
were condemned because of endocarditis. The rest of 
60 pigs were marketing age. We defined the 60 pigs as 
healthy pigs in the present study. Samples of heart valve 
vegetations from 42 pigs and of palatine tonsils from 68 
pigs (8 with endocarditis and 60 healthy) were stamped 
onto either Trypticase soy agar (Becton, Dickinson 
and Company, Sparks, MD, USA) supplemented with 
5% horse blood (TSA-HB) or Columbia agar (OXOID, 
Kanto Chemical Co., Tokyo, Japan) supplemented with 
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Streptococcus selective supplement (Thermo Fisher Sci-
entific, Waltham, USA) and 5% horse blood (COBA), and 
then incubated at 37 °C for 48 h in air, and if necessary, 
passaged to TSA-HB or COBA and incubated for 24 h in 
air or air plus 5% CO2, respectively. Colonies grown on 
the agar with α-hemolysis were selected and screened 
by Gram staining, catalase test, and rapid identification 
kit (Rapid ID32 Strep API, BioMérieux, Marcy-l’Étoile, 
France). The suspected isolates were confirmed to be S. 
suis by species-specific PCR for S. suis (recN PCR) [48]. 
The S. suis isolates were frozen in skim milk (Becton 
Dickinson) at −80 °C until use.

DNA extraction and PCR
The S. suis isolates grown on TSA-HB at 37  °C for 24 h 
in air plus 5% CO2 were used for bacterial DNA extrac-
tion following the alkaline boiling method [49]. Briefly, 
the bacteria were suspended in 25 mM NaOH, heated at 
95 °C for 10 min, and then neutralized by adding an equal 
volume of 80  mM Tris–HCl (pH 8.0), followed by cen-
trifugation at 13 000 × g for 3 min. The supernatants were 
used for PCR. AmpliTaq Gold 360 Master Mix (Thermo 
Fisher Scientific) was used for PCR amplification accord-
ing to the manufacturer’s instructions.

MLST
As described previously, MLST was performed by direct 
sequencing of seven PCR-amplified house-keeping genes 
[37]. The allele numbers and sequence type (ST) of the 
isolates were determined by comparing their sequences 
with those in the PubMLST database [63] accessed in 

May 2023. Novel alleles and STs were assigned by sub-
mitting the respective data to the database administra-
tor. The goeBURST (v1.2) algorithm from Phyloviz 2.0 
software [50] was used to visualize CCs by creating an 
MLST-based minimal spanning tree (MST) with all the 
isolates obtained in this study and all strains retrieved 
from the PubMLST database (2273 STs on May 11, 2023) 
at the triple-locus variant level (TLV). CCs were com-
posed of STs with at least 6 identical alleles, except that 
ST117, ST1528, and ST1529 were included in CCs as 
they were double-locus variants (DLVs) or TLVs of major 
CCs. Among the STs that could not be assigned to any 
CC, those that differed in 4 or more loci from their clos-
est counterparts were defined as singletons. For visualiz-
ing relationships among STs of the tonsil isolates, the 50 
isolates obtained in this study and 559 isolates with ton-
sil origin noted in the database were linked by the goe-
BURST full algorithm in Phyloviz 2.0. From the database, 
MLST profiles of 9 or more deposited from the same 
country were selected for this analysis and the differences 
in countries were color-coded.

Capsular polysaccharide synthesis (cps) gene profiles 
and serotyping
Genotypes of cps genes were determined by the 2-step 
multiplex PCR assay previously described [11]. If the PCR 
fragments could not be obtained or the sizes of the frag-
ments were different from those described in the original 
study, such cases were classified as untypeable and were 
not subject to serum agglutinations. A mismatch ampli-
fication mutation assay-PCR [51] was used to distinguish 

MLST

Visualizing CCs by 
goeBURST

Visualizing relationships 
among STs of the tonsil 

isolates

Cps typing Serotyping

Virulence-associated gene profiling

Antimicrobial susceptibility testing

The S. suis isolates from 
vegetations

• porcine endocarditis

The S. suis isolates from 
porcine tonsils

• porcine endocarditis
• healthy pigs

Methods for characterization

Figure 1  The scheme of the present study design 
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type 1 and 14, and type 2 and 1/2. If the cps genotypes 
could be determined, the serotypes were determined 
using an expected type of commercially available antisera 
by either co-agglutination tests or slide agglutinations 
[20]. In cases where the positive agglutination was not 
observed, such isolates were defined as untypeable.

Virulence‑associated gene profiling
Three virulence-associated genes, muramidase-released 
protein gene (mrp), extracellular factor gene (epf), and 
suilysin gene (sly), were examined by multiplex PCR 
using primers as previously described [28]. Furthermore, 
conventional PCRs were also used for the differentia-
tion of variants of mrp [28] and epf [52]. Variants of MRP 
were expressed as mrpS (747  bp), mrp (1148  bp), mrp* 
(1556 bp), and mrp*** (2400 bp). A large-size variant of 
epf was expressed as epf*.

Antimicrobial susceptibility testing
The minimum inhibitory concentrations (MICs) of the 
tested antibiotics were determined using a broth micro-
dilution method with a commercially available kit (Eiken 
Chemical, Tokyo, Japan) for eight antimicrobial agents 
(penicillin [PCG], ampicillin [ABPC], cefepime [CFPM], 
ceftriaxone [CTRX], azithromycin [AZM], clindamy-
cin [CLDM], clarithromycin [CAM], and levofloxacin 
[LVFX]) and Etest (BioMérieux) for one antimicrobial 
agent (tetracycline [TC]). The MIC breakpoints were 
taken from the Clinical and Laboratory Standard Insti-
tute (CLSI) criteria in M100-ED33 for the Streptococcus 
spp. viridans group [53]. Fisher’s exact test (two-tailed) 
was used to test for statistical significance. Statistical sig-
nificance was set at p < 0.05.

Results
Characterization of S. suis isolates by MLST and goeBURST
Forty-two S. suis isolates were identified from all the veg-
etation samples examined, and 5 and 45 S. suis isolates 
were identified from the palatine tonsils of 8 pigs with 
endocarditis and that of 60 healthy pigs, respectively. The 
details of the isolates are listed in Additional file 1. A total 
of 92 isolates were assigned to 36 STs by MLST analysis 
(Table  1). Among them, 31 isolates were assigned to 27 
novel STs (ST1524-ST1539 and ST1675-ST1685). The 
goeBURST algorithm (v1.2) at the TLV level showed that 
the 42 isolates from endocarditis lesions were assigned to 
either CC1 (ST1 and ST1526) or CC28 (ST28) (Table 1, 
Figure 2A (panels A-1 and A-3)]. On the contrary, among 
the 50 isolates from palatine tonsils, three and twelve iso-
lates were assigned to CC1 and CC28, respectively, nine 
isolates were assigned to various previously identified 
CCs, and among them, six isolates belonged to novel STs 
(Table  1, Figures  2A and B). The remaining 26 isolates 

from palatine tonsils were not assigned to any CCs; 
two isolates were assigned to previously identified STs 
(ST54 and ST664), and 24 isolates belonged to novel STs 
(Table 1).

On the other hand, among the 27 novel STs, four 
(ST1526, ST1528, ST1529, and ST1679) were assigned to 
previously described CCs (Table 1, Figure 2A (panels A-2 
and A-3)). Fifteen novel STs were linked to previously 
identified or novel STs at least at the TLV level (Table 1, 
Figure 2B). Remarkably, two small clusters, one compris-
ing ST1536, ST1534, ST1683, and ST1682, and the other 
comprising ST1678 and ST1680, consisted of only novel 
STs (Figure 2B). Notably, ST54 and ST1539 were close to 
STs that were previously assigned to CC231/1109 (Fig-
ure  2B) [40]. However, eight remaining novel STs were 
considered to be singletons. The closest STs to these sin-
gletons were quadruple-locus variants or quintuple-locus 
variants (Additional file 2).

Relationship among the 50 tonsil isolates and other 
previously identified tonsil isolates
MLST-based MST calculated by the goeBURST full algo-
rithm in Phyloviz 2.0 could link all the examined ton-
sil isolates (Figure  3). Except for two STs, ST1354 and 
ST2230, which were linked to ST1 at the septuple-locus 
variant level (Figure 3B), all the STs showed at least one 
locus that was identical to their counterparts. The STs 
of tonsil isolates were clustered with not only Japanese 
isolates but also those from many other countries. In the 
CC1, CC17, CC28, and CC94 clusters, the representative 
STs were surrounded by other STs with isolates originat-
ing from other countries (Figure 3B). In addition to the 
clusters involved in and close to CCs, isolates from dif-
ferent countries formed many clusters. Although most 
STs differed in more than 3 loci from their counterparts, 
some were single-locus variants (SLVs) or DLVs of other 
STs despite the difference in country of origin (Addi-
tional file 3).

Characterization of S. suis isolates by cps typing 
and serotyping
The cps types and serotypes are summarized in Table 2. 
Cps typing of the 42 isolates from vegetations of endo-
carditis identified only cps2 except for an untypeable 
isolate. Among them, 20 isolates were serotype 2, and 
the expected antiserum did not agglutinate the remain-
ing 21 isolates and were untypeable serotypes. Among 
the 50 isolates from tonsils, nine were cps untypeable. 
The remaining 41 isolates were assigned to 14 differ-
ent cps types. Three of them, belonging to CC1, were 
cps2. Among them, two were serotype 2, and one was 
untypeable serotype. The eight and four isolates belong-
ing to CC28 were cps2 and cps3, respectively; the former 



Page 5 of 13Kobayashi et al. Veterinary Research           (2024) 55:17 	

was serotype 2 and the later was serotype 3. Among the 
remaining 35 isolates, cps types could be determined 
for 26 isolates and serotypes for 23 isolates (Table  2). 
Most cps types harbored one or two STs, whereas cps16 

and cps31 harbored three and five STs, respectively, in 
which one and three were singletons. Cps2 were com-
monly found in the isolates from both vegetations of 
endocarditis and tonsils, and STs in the isolates from 

Table 1  MLST analysis, cps type and profiles of virulence-associated genes of the 92 S. suis isolates 

Variants of mrp are shown as *** (2400 bp), * (1556 bp), and S (747 bp). A large-size variant of epf is shown as *.
a Novel STs.
b Single- to triple-locus variants of other STs; however, clonal complex could not be assigned.
c More than 4 loci were different from other STs.

Clonal complex (CC) Sequence type (ST) No. of isolates cps type mrp epf sly

S. suis isolates from vegetations of porcine endocarditis

 1 1 7 2 +, − + +

1526a 1 2 − + +

 28 28 34 2, UT + − −

S. suis isolates from porcine tonsils

 1 1526a 3 2 − + +

 28 28 8 2 + − −

117 4 3 *** − −

 13 13 1 14 − − +

 17 17 3 4 S * +

 87 87 1 8 − − +

1528a 1 8 − − +

 94 108 1 5 + − +

1529a 1 7 + − +

1679a 1 4 + − +

 Not assignedb 54 1 3 − − +

664 1 16 − − −

1527a 1 9 − − −

1531a 1 UT * − +

1532a 1 31 − − −

1533a 2 UT − − +

1534a 1 UT *** − +

1535a 1 15 *** − +

1536a 1 11 * * +

1538a 1 16 − − −

1539a 1 UT − * +

1678a 1 12 *** − +

1680a 1 12 * − +

1682a 1 UT + − +

1683a 1 UT * − +

1684a 1 31 − − −

1685a 1 10 − − −

Singletonc 1524a 1 16 − − −

1525a 1 UT − − −

1530a 1 UT − − −

1537a 1 31 − − −

1675a 1 31 − − −

1676a 1 5 − − −

1677a 1 11 * − −

1681a 1 31 − − −
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Figure 3  MLST-based minimal spanning tree of 50 S. suis isolates from tonsils described in this study and 559 isolates of tonsil origins in 
the database. The tree was calculated using the goeBURST full algorithm. Numbers within the nodes indicate the corresponding sequence type. 
Node colors refer to the origin of countries as represented in the remarks. Numbers on lines indicate locus variants between nodes
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vegetations and tonsils were similar. On the other hand, 
other cps types were found only in the isolates from ton-
sils (Table 2).

Characterization of S. suis isolates by virulence‑associated 
gene profiles
Virulence-associated gene profiles are summarized in 
Table  1. The 42 isolates from vegetations of endocar-
ditis showed only three patterns of the genotypes, i.e., 
mrp+epf+sly+, mrp− epf+sly+, and, mrp+epf− sly−. 
On the other hand, the 50 isolates from tonsils showed 
various genotypes. The same genotypes seen in the iso-
lates from vegetations were only found in three isolates 
of CC1 (ST1526, cps2) and eight isolates of CC28 (ST28, 
cps2). Furthermore, the typical profile of ST1 (cps2), an 
mrp+epf+sly+ genotype, was not found among the iso-
lates from tonsils, and the 13 isolates of unassigned CC, 
including 12 novel STs and seven singletons (ST664, 
ST1524, ST1525, ST1527, ST1530, ST1532, ST1537, 
ST1538, ST1675, ST1676, ST1681, ST1684 and ST1685 
corresponding to the following cps types, cps5, cps9, 
cps10, cps16, cps31 and cps untypeable), showed a triple 
negative genotype, mrp− epf− sly− (Table 1).

Antimicrobial susceptibility
According to the measured MICs and the CLSI criteria, 
67.4%, 67.4%, 72.8%, 77.2%, and 2.2% of isolates were 
resistant to AZM, CAM, CLDM, TC, and PCG, respec-
tively (Table  3). No significant difference in susceptibil-
ity to any antimicrobial agents was observed between 
isolates from tonsils and vegetations of endocarditis 
(p > 0.05). Furthermore, 60 of all 92 isolates (65.2%) 
showed multidrug resistance to the four agents AZM, 
CAM, CLDM, and TC (Additional file 1).

Discussion
The MLST analyses of S. suis isolated from diseased pigs 
and clinically healthy pigs have been described in many 
previous studies and there have been many efforts to dis-
criminate the highly virulent S. suis isolates from low or 
non-virulent isolates [40, 46, 47, 54–58]. Although highly 
virulent strains that may affect mortality of nursery pig-
lets have been spotlighted, low or non-virulent strains 
that occupy the majority of S. suis may play a part of 
the whole ecosystem. This implies that the low or non-
virulent stains may affect the healthy status of not only 
nursery piglets but also pigs of other ages. In the present 
study, we isolated and examined S. suis from clinically 
healthy pigs to elucidate the diversity of and relationships 
among presumably low virulent S. suis isolates using 
MLST analysis. In a previous study, we showed that prev-
alence of S. suis in Japan was almost similar from north 
to south parts of Japan [2], this suggests that the results 

obtained in this study can be extrapolated to other areas 
because the samples were collected in the meat inspec-
tion center in Tokyo, the biggest consumption area in 
Japan. As has been previously described [8, 9, 20], the 
isolates from endocarditis lesions belonged to a limited 
number of CCs, CC1 and CC28, which are reported to 
involve highly virulent isolates [29, 37–39, 46, 47, 56]. On 
the other hand, fifteen isolates from tonsils belonged to 
CC1 or CC28, consistent with previous studies reporting 
that potentially hazardous S. suis persists in asympto-
matic pigs [59, 60]. To date, in addition to CC1 and CC28, 
CC16, CC17, CC20, CC25, CC94, CC104, CC233/379, 
and CC221/234 have been reported to involve highly 
virulent or potentially hazardous S. suis [56]. ST28 was 
predominant in the isolates from endocarditis and found 
most in those from tonsils. However, as far as the typing 
of MLST, serotypes, and virulence-associated genes, we 
could not discriminate between the ST28 isolates from 
endocarditis and those from tonsils. On the contrary, 
in the present study, the isolates from tonsils showed 
extensive ST diversity; in particular, 30 of the 50 isolates 
from tonsils were assigned to 27 novel STs. Four iso-
lates belonging to novel STs (ST1526, ST1528, ST1529, 
and ST1679) were assigned to previously described CCs 
that may involve potentially hazardous S. suis. In par-
ticular, ST1526 is SLV of ST1 and was found in isolates 
from both tonsils and endocarditis vegetations, suggest-
ing that the isolates belonging to ST1526 were diverged 
from ST1 and were virulent. However, the remaining 26 
isolates belonging to novel STs and two isolates belong-
ing to previously described STs (ST54 and ST664) could 
not be assigned to any CCs or were considered single-
tons (Table  1). Although some of these isolates showed 
relationships to previously described STs or other novel 
STs at least at the TLV level (Figure  2B), these STs did 
not seem to involve highly virulent S. suis. Furthermore, 
eight singletons showed no close relationships to other 
STs (Additional file 2), indicating that the isolates belong-
ing to these novel STs were low or non-virulent S. suis. 
These observations suggest that tonsils can accommodate 
potentially hazardous S. suis and permit a variety of low 
or non-virulent S. suis strains to persistently colonize 
in this niche by protecting them from the host immune 
system.

To characterize the potential of tonsils as niches 
accommodating low or non-virulent S. suis, we made a 
schema of an MLST-based MST calculated by the goe-
BURST full algorithm using S. suis isolates from tonsils 
of healthy pigs obtained in this study and those retrieved 
from the database (Figure  3). Since the algorithm was 
able to connect all the STs even though there are differ-
ences in 7 loci from other STs, with only two exceptions, 
all the examined STs were connected to form a large tree 
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with at least the sextuple-locus variant level (Figure  3). 
Although the number of the isolates from each country 
was different, many of the clusters that appeared in the 
MST were composed of STs whose isolates originated 
from different countries. Furthermore, many STs did not 
belong to major CCs, that is, most STs seemed to con-
tain low or non-virulent S. suis strains. Notably, although 
most of the STs were linked at lower than TLV levels, 
some STs whose isolates originated from different coun-
tries were connected at SLV or DLV levels (Additional 
file 3), indicating that similar mutations affecting the ST 
have occurred across different countries. Imports of live 
pigs into Asian countries from either the EU or North 
American countries for the purpose of breeding take 
place frequently. It is difficult to determine whether the 
international trading of pigs shaped the MST clusters 

Table 2  Cps types and serotypes of 92 S. suis isolates, and their clonal complexes (CCs) and sequence types (STs) 

a Not determined.
b No clonal complex could be assigned.
c Singleton.

cps type No. of isolates belonging to serotypes below CC ST

2 3 4 5 7 8 9 10 11 12 15 16 31 UT

S. suis isolates from vegetations of porcine endocarditis

 2 5 3 1 1, 1526

15 18 28 28

 UT 1a 28 28

S. suis isolates from porcine tonsils

 14 1 13 13

 2 2 1 1 1526

8 28 28

 3 4 28 117

1 NAb 54

 4 3 17 17

1 94 1679

 5 1 94 108

1 NA 1676c

 7 1 94 1529

 8 2 87 87, 1528

 9 1 NA 1527

 10 1 NA 1685

 11 1 1 NA 1536, 1677c

 12 2 NA 1678, 1680

 15 1 NA 1535

 16 3 NA 664, 1524c, 1538

 31 4 1 NA 1532, 1537c, 1675c, 1681c, 1684

 UT 9a NA 1525c, 1530c, 1531, 1533, 1534, 
1539, 1682, 1683

Table 3  Number of isolates and resistance rates (in brackets) 
of each antimicrobial agents by origin and sequence types 
(STs) 

* The minimum inhibitory concentrations were tested for penicillin (PCG), 
ampicillin (ABPC), cefepime (CFPM), ceftriaxone (CTRX), azithromycin (AZM), 
clarithromycin (CAM), clindamycin (CLDM), levofloxacin (LVFX), and tetracycline 
(TC), and breakpoints were taken from the Clinical and Laboratory Standard 
Institute (CLSI) criteria in M100-ED33 for the Streptococcus spp. viridans group 
(CLSI, 2023). There was no isolate resistant for ABPC, CFPM, CTRX, and LVFX.

Agent* Total
n = 92

Origin ST

Tonsils
n = 50

Vegetations
n = 42

ST28
n = 42

Other STs
n = 50

AZM 62 (67.4%) 30 (60.0%) 32 (76.2%) 29 (69.0%) 33 (66.0%)

CAM 62 (67.4%) 30 (60.0%) 32 (76.2%) 29 (69.0%) 33 (66.0%)

CLDM 67 (72.8%) 35 (70.0%) 32 (76.2%) 29 (69.0%) 38 (76.0%)

TC 71 (77.2%) 38 (76.0%) 33 (78.6%) 32 (76.2%) 39 (78.0%)

PCG 2 (2.2%) 2 (4.0%) 0 (0.0%) 0 (0.0%) 2 (4.0%)
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of isolates from different countries or whether a selec-
tive pressure under the same environment in the tonsils 
resulted in similar progenies surviving in such environ-
ment and forming the clusters in the MST. In the case of 
humans, frequent and long-distance moving by globali-
zation can rapidly and globally spread the same clone 
of pathogens, as exemplified by a lineage 4 of Mycobac-
terium tuberculosis [61]. In contrast to humans, pigs in 
farms are not frequently transported between different 
countries and regions. Therefore, such a high degree of 
diversity found in tonsil isolates and survivals of the 
same or related STs may be caused by natural mutations 
followed by selective pressures that occurred during 
multiplications of the bacteria in each country, presum-
ably in pig bodies, rather than carryover of S. suis from 
exporting countries. Although the ST28 strains, which 
were predominant in this study, could be imported by 
the international trading from other ST28 endemic coun-
tries (e.g., North America [55]), these strains have already 
been established and circulating in Japan [59].

All the isolates except 1 (untypeable) from endocardi-
tis lesions were cps type 2, as reported previously [9, 20, 
59]. Among them, 21 isolates did not show agglutination 
against serotype 2 antiserum, suggesting that these iso-
lates were un-encapsulated, as observed previously [8, 9, 
20] (Table  2). On the other hand, only 11 isolates from 
tonsils were cps type 2, of which 10 isolates were serotype 
2. Although we do not have any experimental evidence, 
the one isolate that did not show positive agglutination 
seemed to be un-encapsulated. Interestingly, one iso-
late each in cps types 1, 11, and 31 did not show positive 
agglutination against expected types of antisera, suggest-
ing that these isolates also seemed to be un-encapsulated. 
The un-encapsulated S. suis is believed to be avirulent 
because of weakness against phagocytosis by the host 
defense systems [1, 13, 14, 16, 17]. However, un-encap-
sulated S. suis exhibits increased levels of adhesion to 
host cells and biofilm formation that may confer upon 
the bacteria an ability to persistently colonize and resist 
clearance by host immune systems [14, 20, 22]. Assum-
ing that the isolates that did not show agglutination 
were un-encapsulated, they may have persisted in tonsils 
through the same mechanism of persistence in endocar-
ditis lesions. Although we cannot determine the degree 
of virulence on the basis of the serotypes, the serotypes 
in conjunction with STs suggest that, in addition to un-
encapsulated isolates, most of the isolates from tonsils 
seemed to be low or non-virulent.

The types of virulence-associated genes varied among 
previous reports. However, the major three virulence-
associated genes examined in the present study were 
commonly appeared in those studies [38, 40, 59] and 

easily compare the results among such reports. The iso-
lates from endocarditis lesions showed typical patterns 
of virulence-associated marker genotypes. On the other 
hand, only a few isolates from the tonsils showed the 
typical patterns above; in particular, there was no iso-
lates that showed mrp+epf+sly+, which was frequently 
found in highly virulent ST1 strains [29, 38]. The fact 
that various patterns of virulence-associated genes were 
found and the most frequently found pattern was mrp− 
epf− sly− as well as the findings on MLST and serotypes 
strongly suggest that most of the isolates from tonsils 
were low or non-virulent.

The proportions of resistance to macrolides (AZM 
and CAM), lincomycins (CLDM), and tetracyclines (TC) 
were high (approximately 70%) regardless of the origins, 
with the majority of all isolates presenting multidrug 
resistance to these four agents. Compared to previous 
investigations in the Tokai region of Japan, where antimi-
crobial resistances to CAM, CLDM, and TC were 56.1%, 
65.8%, and 80.7%, respectively [62], our results showed 
similar but higher resistance rates for macrolides and 
lincomycins.

On the basis of MLST, cps genotypes, serotypes, and 
virulence-associated marker genotypes, the isolates from 
endocarditis lesions showed similar patterns, indicating 
that these isolates were highly clonal. On the other hand, 
the isolates from tonsils showed an extensively high 
degree of diversity in all the features examined, and most 
of them seemed to be low or non-virulent; moreover, a 
variety of low or non-virulent isolates could, in fact, per-
sist in tonsils of pigs across many countries.

Characteristics of endocarditis and tonsils isolates 
summarized in Table  4 clearly showed their difference, 
indicating the degree of virulence was apparently differ-
ent between them.

Contrary to the isolates from endocarditis lesions, 
which were highly clonal, the isolates from the tonsils 
of healthy pigs were extensively diverse in MLST analy-
ses, cps gene types, serotyping, and virulence-associated 
marker genotypes. Although most of the isolates from 
the tonsils seemed to be low or non-virulent, such iso-
lates may colonize and persist in the tonsils. A variety of 
STs found in the isolates from tonsils suggests that many 
mutations in the genome have occurred. Some of the 
STs with isolates obtained in different countries showed 
a close relationship. Such mutations occurred randomly 
and incidentally; however, in  vivo conditions in tonsils 
may affect the survival of such mutants; as a result, STs 
that showed a close relationship with each other could 
be found in isolates that originated in different countries. 
Although it is generally difficult to determine whether 
an isolate is virulent or low or non-virulent, our applied 
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method comparing MLST/serotypes/virulent-associated 
genes with previous reports can be useful to predict viru-
lent, low or non-virulent strains. Taken all together, the 
present study suggests that S. suis acquired its diversity 
through natural mutations during colonization and per-
sistence in pig tonsils.
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